The use of preformed nanoparticles in the production of heterogeneous catalysts
Abstract
Preformed iron oxide nanoparticles have been successfully assembled onto alumina and MCM-41 support materials. The particles are found to disperse evenly over the surface of the silicate; however, in the case of the alumina we find that in addition to areas of even distribution there is also some clustering of the particles. The materials are stable under heat treatment, with no signs of further aggregation during calcination. We investigate the reducibility of the materials through H 2 -TPR studies and we find that the particles are reducible around 500-550°C. The reduction process is complete at temperatures where MCM-41 can undergo degradation, supporting that the alumina based materials are more suited to the multiple base oxidation reduction steps in the catalytic cycle. © 2013 Elsevier Inc.
Citation
Source Title
ISSN
School
Collection
Related items
Showing items related by title, author, creator and subject.
-
Siripun, Komsun (2010)Western Australia (WA) has a road network of approximately 177,700 km, including a 17,800 km stage highway system (Main Roads Western Australia 2009). This infrastructure supports a population of only about two million, ...
-
Nusit, K.; Jitsangiam, Peerapong; Kodikara, J.; Bui, H.; Leung, G.L.M. (2015)One of the most common methods used in road-pavement construction is the stabilizing of the conventional pavement base course layer. This is achieved by adding cement or lime to gain better material performance. However, ...
-
Nusit, K.; Jitsangiam, Peerapong; Nikraz, Hamid; Hewa Thalagahage, R. (2014)Cement-treated base is a conveniently and effectively stabilised pavement material consisting of a mixture of standard base course materials blended with a prescribed amount of Portland cement and water. The cement-treated ...