Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Resonance-Based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets

    Access Status
    Fulltext not available
    Authors
    Sushruth, M.
    Ding, J.
    Duczynski, J.
    Woodward, R.
    Begley, R.
    Fangohr, H.
    Fuller, Rebecca
    Adeyeye, A.
    Kostylev, M.
    Metaxas, P.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Sushruth, M. and Ding, J. and Duczynski, J. and Woodward, R. and Begley, R. and Fangohr, H. and Fuller, R. et al. 2016. Resonance-Based Detection of Magnetic Nanoparticles and Microbeads Using Nanopatterned Ferromagnets. Physical Review Applied. 6: 044005.
    Source Title
    Physical Review Applied
    DOI
    10.1103/PhysRevApplied.6.044005
    ISSN
    2331-7019
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/68958
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 American Physical Society. Biosensing with ferromagnet-based magnetoresistive devices has been dominated by electrical detection of particle-induced changes to a device's (quasi-)static magnetic configuration. There are however potential advantages to be gained from using field dependent, high frequency resonant magnetization dynamics for magnetic particle detection. Here, we demonstrate the use of nanoconfined ferromagnetic resonances in periodically nanopatterned magnetic films for the detection of adsorbed magnetic particles having diameters ranging from 6 nm to 4 µm. The nanopatterned films contain arrays of holes which appear to act as preferential adsorption sites for small particles. Hole-localized particles act in unison to shift the frequencies of the patterned layer's ferromagnetic-resonance modes, with shift polarities determined by the localization of each mode within the nanopattern's repeating unit cell. The same polarity shifts are observed for a large range of coverages, even when quasicontinuous particle sheets form above the hole-localized particles. For large particles, preferential adsorption no longer occurs, leading to resonance shifts with polarities that are independent of the mode localization, and amplitudes that are comparable to those seen in continuous layers. Indeed, for nanoparticles adsorbed onto a continuous layer, the particle-induced shift of the layer's fundamental mode is up to 10 times less than that observed for nanoconfined modes in the nanopatterned systems, the low shift being induced by relatively weak fields emanating beyond the particle in the direction of the static applied field. This result highlights the importance of having particles consistently positioned in the close vicinity of confined modes.

    Related items

    Showing items related by title, author, creator and subject.

    • X-ray and neutron scattering of multiferroic LuFe2O4
      Lawrence, Shane Michael (2011)
      Multiferroic materials have recently begun to attract significant scientific interest due to their potential applications in the design of modern electronic devices. Currently, the magnetic properties of materials form ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    • Modelling and analysis of the global stability of Blasius boundary-layer flow interacting with a compliant wall
      Tsigklifis, Konstantinos; Lucey, Tony (2013)
      Theoretical and experimental studies have shown that compliant walls are able to reduce the growth rates of unstable Tollmien-Schlichting waves (TSWs) that are the conventional route to boundary layer transition in ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.