Show simple item record

dc.contributor.authorZhai, L.
dc.contributor.authorKong, S.
dc.contributor.authorZhang, H.
dc.contributor.authorTian, W.
dc.contributor.authorSun, M.
dc.contributor.authorSun, Hongqi
dc.contributor.authorWang, Shaobin
dc.identifier.citationZhai, L. and Kong, S. and Zhang, H. and Tian, W. and Sun, M. and Sun, H. and Wang, S. 2018. Facile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction. Chemical Engineering Science.

© 2018 Elsevier Ltd Cobalt and nitrogen co-doped reduced graphene oxide (Co-N-rGO) composites are prepared by a facile low-temperature hydrothermal method. Structure characterization reveals that cobalt and nitrogen are co-ordinately attached to the rGO sheets with the formation of covalent C-N and Co-O-C linkages. Cyclic voltammetry and linear sweep voltammetry show that the Co-N-rGO composite possesses higher electrocatalytic activity and four-electron selectivity for oxygen reduction reaction (ORR) as compared to the rGO, Co-rGO and N-rGO. In addition, the Co-N-rGO composite presents excellent stability and durability in alkaline medium comparable to commercial Pt/C. The edge plane CoN 2 /C, CoN 4 /C, and basal plane macrocyclic CoN 4 /C species within the Co-N-rGO structure are proposed to be the active sites performing catalysis in the ORR. The strong covalent linkages between the cobalt/nitrogen and rGO not only enable potent synergy of cobalt, nitrogen and rGO in catalysis, but also ensure structure stability of the composite. Due to the superior ORR activity of Co-N-rGO, high-temperature heat treatment is not able to improve its activity any more. The low-temperature hydrothermal method is anticipated to be used as a low-cost and facile preparation approach for ORR catalysts, and the superb ORR performance of Co-N-rGO endow it with great application potential in fuel cells, metal-air batteries and other ORR-related electrochemical industries.

dc.titleFacile synthesis of Co-N-rGO composites as an excellent electrocatalyst for oxygen reduction reaction
dc.typeJournal Article
dcterms.source.titleChemical Engineering Science
curtin.departmentWASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
curtin.accessStatusFulltext not available

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record