Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators

    Access Status
    Fulltext not available
    Authors
    Wang, H.
    Sim, M.
    Loke, W.
    Chinnathambi, A.
    Alharbi, S.
    Tang, F.
    Sethi, Gautam
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Wang, H. and Sim, M. and Loke, W. and Chinnathambi, A. and Alharbi, S. and Tang, F. and Sethi, G. 2017. Potential protective effects of ursolic acid against gamma irradiation-induced damage are mediated through the modulation of diverse inflammatory mediators. Frontiers in Pharmacology. 8 (JUN).
    Source Title
    Frontiers in Pharmacology
    DOI
    10.3389/fphar.2017.00352
    ISSN
    1663-9812
    School
    School of Biomedical Sciences
    URI
    http://hdl.handle.net/20.500.11937/68988
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Wang, Sim, Loke, Chinnathambi, Alharbi, Tang and Sethi. This study was aimed to evaluate the possible protective effects of ursolic acid (UA) against gamma radiation induced damage both in vitro as well as in vivo. It was observed that the exposure to gamma radiation dose- and time-dependently caused a significant decrease in the cell viability, while the treatment of UA attenuated this cytotoxicity. The production of free radicals including reactive oxygen species (ROS) and NO increased significantly post-irradiation and further induced lipid peroxidation and oxidative DNA damage in cells. These deleterious effects could also be effectively blocked by UA treatment. In addition, UA also reversed gamma irradiation induced inflammatory responses, as indicated by the decreased production of TNF-a, IL-6, and IL-1ß. NF-?B signaling pathway has been reported to be a key mediator involved in gamma radiation-induced cellular damage. Our results further demonstrated that gamma radiation dose- and time-dependently enhanced NF-?B DNA binding activity, which was significantly attenuated upon UA treatment. The post-irradiation increase in the expression of both phospho-p65, and phospho-I?Ba was also blocked by UA. Moreover, the treatment of UA was found to significantly prolong overall survival in mice exposed to whole body gamma irradiation, and reduce the excessive inflammatory responses. Given its radioprotective efficacy as described here, UA as an antioxidant and NF-?B pathway blocker, may function as an important pharmacological agent in protecting against gamma irradiation-induced injury.

    Related items

    Showing items related by title, author, creator and subject.

    • Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors
      Caldwell, M.; Bornman, Janet; Ballare, C.; Flint, S.; Kulandaivelu, G. (2007)
      There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting ...
    • Radiation tolerance of ceramics—insights from atomistic simulation of damage accumulation in pyrochlores
      Devanathan, R.; Weber, W.; Gale, Julian (2010)
      We have used molecular dynamics simulations to investigate the effects of radiation damage accumulation in two pyrochlore-structured ceramics, namely Gd2Ti2O7 and Gd2Zr2O7. It is well known from experiment that the titanate ...
    • Differential effects of 670 and 830 nm red near infrared irradiation therapy: A comparative study of optic nerve injury, retinal degeneration, traumatic brain and spinal cord injury
      Giacci, M.; Wheeler, L.; Lovett, S.; Dishington, E.; Majda, B.; Bartlett, C.; Thornton, E.; Harford-Wright, E.; Leonard, A.; Vink, R.; Harvey, A.; Provis, J.; Dunlop, S.; Hart, N.; Hodgetts, S.; Natoli, R.; Van Den Heuvel, C.; Fitzgerald, Melinda (2014)
      Red/near-infrared irradiation therapy (R/NIR-IT) delivered by laser or light-emitting diode (LED) has improved functional outcomes in a range of CNS injuries. However, translation of R/NIR-IT to the clinic for treatment ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.