Prediction of microscale rock mechanical performance from microCT images: Heterogeneous coal as an example
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
Source Conference
ISBN
School
Collection
Abstract
© 2017 ARMA, American Rock Mechanics Association. The prediction of rock mechanical performance is very important as it is directly related to safety issues and geological engineering design. However, there is a lack of understanding at the micrometer scale. Thus we introduce a new method to predict micro scale rock mechanical properties based on microCT imaging, combined with nanoindentation testing and discrete element method (DEM) modelling. Essentially microCT scanning and nanoindentation testing provide the morphology and mechanical property inputs for the DEM simulation. As an example the CO2-swelling effect of a highly heterogeneous coal sample is presented, and we were able to correctly predict the internal stresses, and the failure mechanisms of the unswelling (mineral) phase, consistent with lab experiments. We thus conclude that the proposed method can accurately and efficiently predict the rock mechanical performance at microscale.
Related items
Showing items related by title, author, creator and subject.
-
Sharifzadeh M, Z.; Feng, X-T; Zhang, X.; Qiao, L.; Zhang, Y. (2017)As a consequence of rapid growing trend of resource extraction in world, depth of excavations for resource exploitation increases. Eventually excavations faces with transition from low stress to high stress condition. In ...
-
Sharifzadeh, Mostafa; Javadi, M. (2017)© 2017 Taylor & Francis Group, London, UK. The hydraulic behavior and associated mechanical, physical, and chemical processes of geological formations and rock masses are one of the most important aspects of rock ...
-
Iglauer, Stefan; Lebedev, Maxim (2018)© 2018 Elsevier B.V. Physical, chemical and mechanical pore-scale (i.e. micrometer-scale) mechanisms in rock are of key importance in many, if not all, subsurface processes. These processes are highly relevant in various ...