Show simple item record

dc.contributor.authorChai, K.
dc.contributor.authorGibson, David
dc.date.accessioned2018-08-08T04:41:27Z
dc.date.available2018-08-08T04:41:27Z
dc.date.created2018-08-08T03:50:49Z
dc.date.issued2015
dc.identifier.citationChai, K. and Gibson, D. 2015. Predicting the risk of attrition for undergraduate students with time based modelling, pp. 109-116.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/69540
dc.description.abstract

Improving student retention is an important and challenging problem for universities. This paper reports on the development of a student attrition model for predicting which first year students are most at-risk of leaving at various points in time during their first semester of study. The objective of developing such a model is to assist universities by proactively supporting and retaining these students as their situations and risk change over time. The study evaluated different models for predicting student attrition at four different time periods throughout a semester study period: pre-enrolment, enrolment, in-semester and end-of-semester models. A dataset of 23,291 students who enrolled in their first semester between 2011-2013 was extracted from various data sources. Three supervised machine learning techniques were tested to develop the predictive models: logistic regression, decision trees and random forests. The performance of these models were evaluated using the precision and recall metrics. The model achieved the best performance and user utility using logistic regression (67% precision, 29% recall). A web application was developed for users to visualise and interact with the model results to assist in the targeting of student intervention responses and programs.

dc.titlePredicting the risk of attrition for undergraduate students with time based modelling
dc.typeConference Paper
dcterms.source.startPage109
dcterms.source.endPage116
dcterms.source.titleProceedings of the 12th International Conference on Cognition and Exploratory Learning in the Digital Age, CELDA 2015
dcterms.source.seriesProceedings of the 12th International Conference on Cognition and Exploratory Learning in the Digital Age, CELDA 2015
dcterms.source.isbn9789898533432
curtin.departmentCurtin Teaching and Learning (CTL)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record