The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Comparison between industrial waste coal bottom ash catalyst and commercial catalysts (nickel and natural zeolite) in catalytic pyrolysis of rice husk were investigated in this study. Characterization through X-ray fluorescence (XRF), X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and energy disperse X-ray analysis (EDX), and Brunauer–Emmett–Teller analysis (BET) were carried out to understand the physiochemical activity of the catalysts in pyrolysis of rice husk. The catalyst to rice husk ratio of 0.1 was pyrolyzed in the temperature range of 323–1173 K using thermogravimetric analyzer coupled with mass spectrometer (TGA-MS) equipment to investigate the effect of catalysts in thermal degradation behavior of biomass and syngas production. The study revealed that lowest coke formation (3.65 wt%) associated with high syngas (68.3 vol%) were attained in catalytic pyrolysis using coal bottom ash catalyst compared to nickel and natural zeolite catalysts. Moreover, the hydrogen concentration had increased 8.4 vol% in catalytic pyrolysis of rice husk using coal bottom ash catalyst compared to non-catalytic pyrolysis.
Related items
Showing items related by title, author, creator and subject.
-
Loy, A.; Yusup, S.; Chin, Bridgid; Gan, D.; Shahbaz, M.; Acda, M.; Unrean, P.; Rianawati, E. (2018)Pyrolysis of rice husk (RH) in the presence of three different types of catalysts (nickel, natural zeolite, and coal bottom ash) for syngas production were investigated by TGA-MS. The catalyst to RH ratio of 0.1 was ...
-
Gan, D.; Chin, Bridgid; Loy, A.; Yusup, S.; Acda, M.; Unrean, P.; Rianawati, E.; Jawad, Z.; Lee, R. (2018)© Published under licence by IOP Publishing Ltd. Pyrolysis of rice hull (RH) with the presence of CaCO3 catalyst was carried out in this study to understand the effect of alkali catalyst in the thermal degradation behaviour ...
-
Loy, A.; Gan, D.; Yusup, S.; Chin, Bridgid; Lam, M.; Shahbaz, M.; Unrean, P.; Acda, M.; Rianawati, E. (2018)The thermal degradation behaviour and kinetic parameter of non-catalytic and catalytic pyrolysis of rice husk (RH) using rice hull ash (RHA) as catalyst were investigated using thermogravimetric analysis at four different ...