Active, durable bismuth oxide-manganite composite oxygen electrodes: Interface formation induced by cathodic polarization
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Bismuth oxide is as an active promoter in enhancing the ionic conductivity and electrocatalytic activity of manganite oxygen electrodes of solid oxide cells, but there are very limited reports on the formation and evolution of electrode/electrolyte interface of bismuth oxide-manganite composite electrode under the influence of electrochemical polarization. Herein, we report the effect of electrochemical polarization and direction of polarization current on the electrocatalytic performance and electrode/electrolyte interface of a (La0·8Sr0.2)0.95Mn0·95Pt0·05O3+δ-Er0.4Bi1·6O3 (LSMPt-ESB) composite oxygen electrode assembled on zirconia electrolyte. The cell with the LSMPt-ESB electrode produces outstanding performance for power generation and steam splitting, and it is stable without noticeable degradation during operation at 600 °C for 350 h in the fuel cell mode. The cathodic polarization induces in operando formation of electrode/electrolyte interface with observation of an Er-deficient LSMPt-ESB dense layer and Er-rich (Er,Bi,Mn)Ox particles on the zirconia electrolyte surface. This is different to the case of dwell under open circuit and in particular under anodic polarization conditions. The present study gains insights into the development of high performance, reliable bismuth oxide-manganite composite oxygen electrode for reduced temperature solid oxide cells.
Related items
Showing items related by title, author, creator and subject.
-
Ai, N.; Veder, Jean-Pierre; Cheng, Y.; Chen, M.; Chen, K.; Zhang, T.; Jiang, S. (2017)© 2017 The Electrochemical Society. All rights reserved. Bismuth oxide exhibits extraordinary ionic conductivity and high surface exchange ability, but the low melting temperature and instability in reducing environment ...
-
He, Shuai; Zhang, Qi; Maurizio, Giulio; Catellani, Lorenzo; Chen, K.; Chang, Q.; Santarelli, M.; Jiang, San Ping (2018)© Copyright 2018 American Chemical Society. Bismuth-based oxides exhibit outstanding oxygen ionic conductivity and fast oxygen surface kinetics and have shown great potential as a highly active component for electrode ...
-
Ai, N.; Li, N.; He, S.; Cheng, Y.; Saunders, M.; Chen, K.; Zhang, T.; Jiang, San Ping (2017)Bismuth based oxides have excellent ionic conductivity and fast oxygen surface kinetics and show promising potential as highly active electrode materials in solid oxide cells (SOCs) such as solid oxide fuel cells (SOFCs) ...