A bayesian scene-prior-based deep network model for face verification
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
Face recognition/verification has received great attention in both theory and application for the past two decades. Deep learning has been considered as a very powerful tool for improving the performance of face recognition/verification recently. With large labeled training datasets, the features obtained from deep learning networks can achieve higher accuracy in comparison with shallow networks. However, many reported face recognition/verification approaches rely heavily on the large size and complete representative of the training set, and most of them tend to suffer serious performance drop or even fail to work if fewer training samples per person are available. Hence, the small number of training samples may cause the deep features to vary greatly. We aim to solve this critical problem in this paper. Inspired by recent research in scene domain transfer, for a given face image, a new series of possible scenarios about this face can be deduced from the scene semantics extracted from other face individuals in a face dataset. We believe that the “scene” or background in an image, that is, samples with more different scenes for a given person, may determine the intrinsic features among the faces of the same individual. In order to validate this belief, we propose a Bayesian scene-prior-based deep learning model in this paper with the aim to extract important features from background scenes. By learning a scene model on the basis of a labeled face dataset via the Bayesian idea, the proposed method transforms a face image into new face images by referring to the given face with the learnt scene dictionary. Because the new derived faces may have similar scenes to the input face, the face-verification performance can be improved without having background variance, while the number of training samples is significantly reduced. Experiments conducted on the Labeled Faces in the Wild (LFW) dataset view #2 subset illustrated that this model can increase the verification accuracy to 99.2% by means of scenes’ transfer learning (99.12% in literature with an unsupervised protocol). Meanwhile, our model can achieve 94.3% accuracy for the YouTube Faces database (DB) (93.2% in literature with an unsupervised protocol).
Related items
Showing items related by title, author, creator and subject.
-
Salman, A.; Jalal, A.; Shafait, F.; Mian, A.; Shortis, M.; Seager, J.; Harvey, Euan (2016)Underwater video and digital still cameras are rapidly being adopted by marine scientists and managers as a tool for non-destructively quantifying and measuring the relative abundance, cover and size of marine fauna and ...
-
Marrable, Daniel ; Barker, Kathryn; Tippaya, Sawitchaya; Wyatt, M.; Bainbridge, S.; Stowar, M.; Larke, Jason (2022)Machine-assisted object detection and classification of fish species from Baited Remote Underwater Video Station (BRUVS) surveys using deep learning algorithms presents an opportunity for optimising analysis time and rapid ...
-
Horn, Z.; Auret, L.; McCoy, J.; Aldrich, Chris; Herbst, B. (2017)Image-based soft sensors are of interest in process industries due to their cost-effective and non-intrusive properties. Unlike most multivariate inputs, images are highly dimensional, requiring the use of feature extractors ...