Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Isotopic constraints on fluid evolution and ore precipitation in a sediment-hosted Pb-Ag-Ba-Zn-Cu-Au deposit in the Capricorn Orogen, Western Australia

    Access Status
    Fulltext not available
    Authors
    Meadows, H.
    Reddy, Steven
    Clark, Christopher
    Harris, C.
    Martin, L.
    White, A.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Meadows, H. and Reddy, S. and Clark, C. and Harris, C. and Martin, L. and White, A. 2018. Isotopic constraints on fluid evolution and ore precipitation in a sediment-hosted Pb-Ag-Ba-Zn-Cu-Au deposit in the Capricorn Orogen, Western Australia. Applied Geochemistry. 96: pp. 217-232.
    Source Title
    Applied Geochemistry
    DOI
    10.1016/j.apgeochem.2018.06.012
    ISSN
    0883-2927
    School
    School of Earth and Planetary Sciences (EPS)
    URI
    http://hdl.handle.net/20.500.11937/69838
    Collection
    • Curtin Research Publications
    Abstract

    The Abra Pb-Ag-Ba-Zn-Cu-Au deposit in the Capricorn Orogen, Western Australia is primarily a lead and silver resource currently estimated at 47.8 Mt (indicated and inferred) of 7.3–10.1% Pb and 18–28 gt-1Ag, although significant Cu-Au zones are also identified. The deposit is unique within sediment-hosted Pb-Zn deposits for its low Zn content, significant Cu-Au zone and high Fe content, providing a case study where the source of fluid and ore-forming processes are contentious. The combination of whole-rock hydrogen and oxygen isotope data, in situ oxygen isotope data in quartz, and in situ sulphur isotope data of pyrite and chalcopyrite, has been used to reconstruct a complex history of overprinting, involving stages of sedimentation, diagenesis and hydrothermal activity. The host sedimentary rocks consist of detrital quartz (d18O ~11–18‰) and whole rock d18O values (~9–16‰) reflecting the combined composition of detrital and authigenic minerals, diagenetic-metamorphic exchange, chlorite and iron content. Quartz in recrystallised chemical sedimentation, quartz cementation, and quartz-barite veins at low temperatures (~100–250 °C) involved predominantly surface and formation fluids with a wide range of fluid d18O values between ~ -5‰ and 2.6‰. Quartz in chloritized host rock with disseminated pyrite and chalcopyrite-galena veins at 250–320 °C reflect exchange with fluids(s) having a narrow range of d18O values (~5–9‰), most likely formation fluids. The fluid responsible for iron oxide, pyrite and polymetallic carbonate veins appears to be a mixture of formation and lighter surface fluids, with a range of fluid d18O values (~0.8–5.5‰). In situ sulphur isotopes are consistent with reduced seawater sulphate source in all samples, therefore it is likely that metal-rich formation fluids have interacted with reduced sulphate in the host sediments to precipitate as sulphide. Mineralisation and associated alteration at Abra has caused whole rock d18O values to decrease in the deposit which may be useful as a tool for exploration in similar sediment-hosted base-metal deposits. We have shown the combination of different isotopic systems, and utilisation of in situ techniques, can constrain the sources and evolution of fluid and sulphur involved in basin formation, hydrothermal alteration and base metal mineralisation. Isotopic values can be directly related to different mineral populations within a relative temporal framework and can be used to distinguish fluids between multiple events.

    Related items

    Showing items related by title, author, creator and subject.

    • Multi-stage alteration at Nifty copper deposit resolved via accessory mineral dating and trace elements
      Ribeiro, Bruno; Kirkland, Chris ; Hartnady, Michael ; Martin, E.L.; West, E.; Polito, P. (2023)
      The sediment hosted Nifty prospect is one of the most prominent Cu deposits in the Neoproterozoic Paterson Province, which girdles the eastern margin of the Archean Pilbara Craton in Western Australia. The timing of ...
    • New insights into the metallogeny of MVT Zn-Pb deposits: A case study from the Nayongzhi in South China, using field data, fluid compositions, and in situ S-Pb isotopes
      Zhou, J.; Wang, Xuan-Ce; Wilde, Simon; Luo, K.; Huang, Z.; Wu, T.; Jin, Z. (2018)
      © 2018 Walter de Gruyter GmbH, Berlin/Boston. The newly discovered Nayongzhi Zn-Pb deposit ( > 20 Mt ores at 1.11-15.65 wt% Zn and 0.59-0.97 wt% Pb) in NW Guizhou province, South China, is hosted by late Ediacaran and ...
    • Ore-forming processes of the daqiao epizonal orogenic gold deposit, west qinling orogen, China: Constraints from textures, trace elements, and sulfur isotopes of pyrite and marcasite, and raman spectroscopy of carbonaceous material
      Wu, Y.; Li, J.; Evans, Katy; Koenig, A.; Li, Z.; O Brien, H.; Lahaye, Y.; Rempel, Kirsten; Hu, S.; Zhang, Z.; Yu, J. (2018)
      The Daqiao gold deposit is hosted in organic-rich Triassic pumpellyite-actinolite facies metamorphosed turbidites in the West Qinling orogen, central China. Gold mineralization is characterized by high-grade hydraulic ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.