Evaluation of the impacts of future hydrological changes on the sustainable water resources management of the Richmond River catchment
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The conceptual rainfall–runoff (HBV model) is applied to evaluate impacts of future climate changes on the hydrological system of the Richmond River catchment, Australia. Daily observed rainfall, temperature and discharge and long-term monthly mean potential evapotranspiration from the hydro-meteorological stations within the catchment over the period 1972–2014 were used to run, calibrate and validate the HBV model before the simulation. Future climate signals were extracted from a multi-model ensemble of eight global climate models (GCMs) of the CMIP5 under three scenarios (RCP2.6, RCP4.5 and RCP8.5). The calibrated HBV model was forced with the downscaled rainfall and temperature to simulate future streamflow at catchment outlet for the near-future (2016–2035), mid (2046–2065) and late (2080–2099) 21st century. A baseline run, with baseline climate period 1971–2010, was used to represent current climate status. Almost all GCMs’ scenarios predict slight increase in annual mean rainfall during the beginning of the century and decrease towards the mid and late century. Modelling results also show positive trends in annual mean streamflow during the near-future (13–23%), and negative trends in the mid (2–6%) and late century (6–16%), under all scenarios compared to the baseline-run. Findings could assist in managing future water resources in the catchment.
Related items
Showing items related by title, author, creator and subject.
-
Islam, Syed; Bari, M.; Anwar, Faisal (2014)Reduction of rainfall and runoff in recent years across southwest Western Australia (SWWA) has attracted attention to the climate change impact on water resources and water availability in this region. In this paper, the ...
-
Islam, Syed; Bari, M.; Anwar, Faisal (2011)Climate change, a harsh reality of modern civilization, has significant impact on water resources. General Circulation Models (GCMs) can predict long term impact of climate change at large orcontinental scale with some ...
-
Al-Safi, H.; Sarukkalige, Priyantha Ranjan (2018)This paper presents an assessment of the impacts of future climate changes on the hydrological characteristics of Harvey River catchment in Western Australia. A conceptual lumped-parameter rainfall-runoff model (HBV model) ...