Lead compensator design for single-phase quasi Z-source inverter
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
This paper presents a new control method for single-phase quasi-Z-source inverter (qZSI). At present, trial and error, as well as tuning of traditional proportional integral (PI) controller techniques, are utilized at the aforementioned topology to achieve system stability. Nevertheless, drawbacks of PI controlled based converter/inverter topologies are realized which include slow response speed and poor robust performance compared with the systems uncertainties and exogenous disturbances. In this work, lead compensator in control of the unipolar sinusoidal pulse width modulation (SPWM) qZSI is demonstrated to show its superiority against traditional PI control based on the derived qZSI's small signal model. The methods to obtain the controllers' parameters of the lead compensator is also documented in this paper. The effectiveness and the theoretical analysis of the proposed approach are verified through simulation studies for different loading conditions. The simulation demonstrates the correctness and effectiveness of the proposed control method in providing fast dynamic and transient response through frequency response analysis.
Related items
Showing items related by title, author, creator and subject.
-
Nandong, Jobrun (2010)The vast majority of chemical and bio-chemical process plants are normally characterized by large number of measurements and relatively small number of manipulated variables; these thin plants have more output than input ...
-
Li, Bin (2011)In this thesis, we consider several types of optimal control problems with constraints on the state and control variables. These problems have many engineering applications. Our aim is to develop efficient numerical methods ...
-
Kam, Kiew M. (2000)Differential geometric nonlinear control of a multiple stage evaporator system of the liquor burning facility associated with the Bayer process for alumina production at Alcoa Wagerup alumina refinery, Western Australia ...