Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Theses
    • View Item
    • espace Home
    • espace
    • Curtin Theses
    • View Item

    Atmospheric water vapour determination from remotely sensed hyperspectral data.

    12544_Rodger A 2002.pdf (16.78Mb)
    Access Status
    Open access
    Authors
    Rodger, Andrew P.
    Date
    2002
    Supervisor
    Associate Professor Mervyn Lynch
    Type
    Thesis
    Award
    PhD
    
    Metadata
    Show full item record
    School
    School of Applied Science
    URI
    http://hdl.handle.net/20.500.11937/701
    Collection
    • Curtin Theses
    Abstract

    The accurate estimation of atmospheric water vapour and the subsequent derivation of surface spectral reflectance from hyperspectral VNIR-SWIR remotely sensed data is important for many applications. A number of algorithms have been developed for estimating water vapour content from remotely sensed hyperspectral data that do not require in-situ measurements. Two algorithms, the Continuum Interpolated Band Ratio (CIBR) and the Atmospheric Precorrected Differential Absorption (APDA) have proven to be highly effective at estimating atmospheric water vapour. Although highly successful, the two methods still exhibit unwanted or spurious results when challenging conditions are encountered. Such conditions include the estimation of atmospheric water vapour over dark targets, when uncorrected atmospheric aerosols are present and over surfaces with complex spectral signatures.A differential absorption method called the Transmittance Slope Ratio (TSR) has been developed that negates these problems. The TSR method is comprised of a weighted mean radiance that is defined between two atmospheric water absorption features which is divided by a reference channel radiance to produce a measurable ratio value. This, is turn, may be related to a reference curve, such that, the TSR value may be expressed as an atmospheric water vapour content. To test the TSR method over real terrains, AVIRIS and HyMap measured hyperspectral radiometric data were used. Three test sites were used in total with each site allowing different aspects of the water vapour estimation to be critically examined. The sites are, Jasper Ridge and Moffett Field in California and Brukunga in South Australia.The TSR method is found to significantly improve estimated atmospheric water vapour over dark targets (with less than 3.5 % error for reflectances as low as 0.5 %), improvement over nonlinear surfaces, and finally, improvement in water vapour estimation when atmospheric aerosol conditions are not well known. In the final case the TSR method is found to estimate atmospheric water vapour with an error of less than 2 % when a 5 km visibility is assumed to be 25 km. The final result is at least an order of magnitude better than the CIBR and APDA methods.

    Related items

    Showing items related by title, author, creator and subject.

    • Reducing the dimensionality of hyperspectral remotely sensed data with applications for maximum likelihood image classification
      Santich, Norman Ty (2007)
      As well as the many benefits associated with the evolution of multispectral sensors into hyperspectral sensors there is also a considerable increase in storage space and the computational load to process the data. ...
    • Improving the estimation of zenith dry tropospheric delays using regional surface meteorological data
      Luo, X.; Heck, B.; Awange, Joseph (2013)
      Global Navigation Satellite Systems (GNSS) are emerging as possible tools for remote sensing high-resolution atmospheric water vapour that improves weather forecasting through numerical weather prediction models. Nowadays, ...
    • Surface-atmosphere interactions in the thermal infrared (8 - 14um)
      McAtee, Brendon Kynnie (2003)
      Remote sensing of land surface temperature (LST) is a complex task. From a satellite-based perspective the radiative properties of the land surface and the atmosphere are inextricably linked. Knowledge of both is required ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.