Synchrotron radiation computed tomography versus conventional computed tomography for assessment of four types of stent grafts used for endovascular treatment of thoracic and abdominal aortic aneurysms
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
http://qims.amegroups.com/article/view/20490/20189
Collection
Abstract
Background: To determine the accuracy of synchrotron radiation computed tomography (CT) for measurement of stent wire diameters for in vitro simulation of endovascular aneurysm repair by four different types of stent grafts when compared to conventional CT images. Methods: This study was performed using an aorta model with implantation of four aortic stent grafts for endovascular treatment of thoracoabdominal and abdominal aortic aneurysms. The aorta model was scanned using synchrotron radiation CT with beam energies ranging from 60 to 90 keV with 10 keV increment at each scan and spatial resolution of 41.6 µm per pixel. Stent wire diameters were measured at the top and body regions of each stent graft based on 2-dimensional (2D) axial and 3-dimensional (3D) reconstruction images, with measurements compared to those obtained from 128-slice CT images which were acquired with slice thickness of 0.5 mm. Results: Synchrotron radiation CT images clearly demonstrated stent graft details with accurate assessment of stent wire diameters, with measurements at the top of stent grafts (between 0.32±0.02 and 0.47±0.02 mm) similar to the actual diameters (between 0.32±0.01 and 0.48±0.01 mm) when the beam energies of 70 and 80 keV were used, regardless of the types of stent grafts assessed. A beam energy of 60 keV resulted in stent wires thicker than the actual sizes, although this did not reach statistical significance (P=0.07–0.29), while the beam energy of 90 keV led to stent wires smaller than the actual sizes at the top (P=0.16) and body region (P=0.02) of stent grafts on 2D axial images. The stent wire sizes measured at the body region of stent grafts on 3D synchrotron radiation images (between 0.19±0.02 and 0.43±0.02 mm) were significantly smaller than the actual diameters (P=0.02–0.04). Stent wires were overestimated on conventional CT images with diameters more than 2-fold larger than the actual sizes (P=0.007–0.03) at both top and body regions of all four stent grafts. Conclusions: This study further confirms the accuracy of high-resolution synchrotron radiation CT in image visualization and size measurement of different aortic stent grafts with measured wire diameters similar to the actual ones, thus allowing for more accurate assessment of stent wire details for endovascular repair of aortic aneurysms.
Related items
Showing items related by title, author, creator and subject.
-
Sun, Zhonghua; Ng, C. (2017)This study was conducted on a human aorta phantom with a commercially available stent graft placed in the aorta with the aim of investigating visualization of aortic stent graft by synchrotron radiation. Synchrotron ...
-
Sun, Zhonghua; Ng, Curtise (2017)Purpose: To compare in vivo the use of synchrotron radiation to computed tomography angiography (CTA) for the measurement of cross-sectional area (CSA) reduction of the aortic branch ostia caused by suprarenal stent-graft ...
-
Sun, Zhonghua; Ng, Curtise Kin Cheung (2017)PURPOSE: To compare in vivo the use of synchrotron radiation to computed tomography angiography (CTA) for the measurement of cross-sectional area (CSA) reduction of the aortic branch ostia caused by suprarenal stent-graft ...