Show simple item record

dc.contributor.authorTomas Andres, Carla de
dc.contributor.authorSuarez-Martinez, Irene
dc.contributor.authorMarks, Nigel
dc.date.accessioned2018-08-08T04:43:54Z
dc.date.available2018-08-08T04:43:54Z
dc.date.created2018-08-08T03:50:53Z
dc.date.issued2018
dc.identifier.citationTomas Andres, C.D. and Suarez-Martinez, I. and Marks, N. 2018. Carbide-derived carbons for dense and tunable 3D graphene networks. Applied Physics Letters. 112 (25): Article No 251907.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/70223
dc.identifier.doi10.1063/1.5030136
dc.description.abstract

The mechanical properties of carbide-derived carbons (CDCs) are computed using molecular dynamics simulations, spanning the experimental density range and synthesis temperatures. The structures consist of nanoporous networks with continuous graphene walls enclosing the pores. Calculation of elastic constants and simulation of tensile strain reveal a direct relationship between the microstructure and elasticity, with the density and temperature inducing significant changes in the pore topology and medium-range order. CDCs have a high elastic moduli and high ultimate tensile strengths while showing resistance to brittle fracture. This suggests that CDCs are a promising route to achieve dense 3D graphene networks with tunable mechanical properties.

dc.publisherAmerican Institute of Physics
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/DP150103487
dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/FT140100191
dc.titleCarbide-derived carbons for dense and tunable 3D graphene networks
dc.typeJournal Article
dcterms.source.volume112
dcterms.source.number25
dcterms.source.issn0003-6951
dcterms.source.titleApplied Physics Letters
curtin.departmentSchool of Electrical Engineering, Computing and Mathematical Science (EECMS)
curtin.accessStatusOpen access


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record