Show simple item record

dc.contributor.authorLewis, R.
dc.contributor.authorPaláncz, B.
dc.contributor.authorAwange, Joseph
dc.date.accessioned2018-08-08T04:44:07Z
dc.date.available2018-08-08T04:44:07Z
dc.date.created2018-08-08T03:50:46Z
dc.date.issued2018
dc.identifier.citationLewis, R. and Paláncz, B. and Awange, J. 2018. Fitting a Sphere via Gröbner Basis, pp. 319-327.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/70245
dc.identifier.doi10.1007/978-3-319-96418-8_38
dc.description.abstract

© 2018, Springer International Publishing AG, part of Springer Nature. In indoor and outdoor navigation, finding the local position of a sphere in mapping space employing a laser scanning technique with low-cost sensors is a very challenging and daunting task. In this contribution, we illustrate how Gröbner basis techniques can be used to solve polynomial equations arising when algebraic and geometric measures for the error are used. The effectiveness of the suggested method is demonstrated, thanks to standard CAS software like Mathematica, using numerical examples of the real world.

dc.titleFitting a Sphere via Gröbner Basis
dc.typeConference Paper
dcterms.source.volume10931 LNCS
dcterms.source.startPage319
dcterms.source.endPage327
dcterms.source.titleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dcterms.source.seriesLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
dcterms.source.isbn9783319964171
curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record