Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Dynamics and Molecular Mechanism of Phosphate Binding to a Biomimetic Hexapeptide

    Access Status
    Fulltext not available
    Authors
    Zhai, H.
    Qin, L.
    Zhang, W.
    Putnis, Christine
    Wang, L.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhai, H. and Qin, L. and Zhang, W. and Putnis, C. and Wang, L. 2018. Dynamics and Molecular Mechanism of Phosphate Binding to a Biomimetic Hexapeptide. Environmental Science and Technology. 52 (18): pp. 10472-10479.
    Source Title
    Environmental Science and Technology
    DOI
    10.1021/acs.est.8b03062
    ISSN
    0013-936X
    School
    School of Molecular and Life Sciences (MLS)
    URI
    http://hdl.handle.net/20.500.11937/70758
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 American Chemical Society. Phosphorus (P) recovery from wastewater is essential for sustainable P management. A biomimetic hexapeptide (SGAGKT) has been demonstrated to bind inorganic P in P-rich environments, however the dynamics and molecular mechanisms of P-binding to the hexapeptide still remain largely unknown. We used dynamic force spectroscopy (DFS) to directly distinguish the P-unbound and P-bound SGAGKT adsorbed to a mica (001) surface by measuring the single-molecule binding free energy (?Gb). Using atomic force microscopy (AFM) to determine real-time step retreat velocities of triangular etch pits formed at the nanoscale on the dissolving (010) face of brushite (CaHPO4·2H2O) in the presence of SGAGKT, we observed that SGAGKT peptides promoted in situ dissolution through an enhanced P-binding driven by hydrogen bonds in a P-loop being capable of discriminating phosphate over arsenate, concomitantly forming a thermodynamically favored SGAGKT-HPO42- complexation at pH 8.0 and relatively low ionic strength, consistent with the DFS and isothermal titration calorimetry (ITC) determinations. The findings reveal the thermodynamic and kinetic basis for binding of phosphate to SGAGKT and provide direct evidence for phosphate discrimination in phosphate/arsenate-rich environments.

    Related items

    Showing items related by title, author, creator and subject.

    • Urolithiasis: occurrence and function of intracrystalline proteins in calcium oxalate monohydrate crystals
      Fleming, David Elliot (2004)
      The broad aim of the work presented in this thesis was to examine the relationship between the mineral and organic phases of calcium oxalate monohydrate (COM) crystals, which are the principal components of human kidney ...
    • The molecular binding interactions of inhibitors and activators of phosphoenolpyruvate carboxylase
      Mancera, Ricardo; Carrington, B. (2005)
      We have performed molecular modelling studies of the binding to maize phosphoenolpyruvate carboxylase (PEPC) of phosphoenolpyruvate (PEP) and a number of representative competitive inhibitors. We predict that all these ...
    • First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells
      Cheng, Yi ; Wang, M.; Lu, S.; Tang, C.; Wu, X.; Veder, Jean-Pierre ; Johannessen, B.; Thomsen, L.; Zhang, J.; Yang, S.Z.; Wang, S.; Jiang, San Ping (2021)
      Phosphate poisoning of Pt electrocatalysts is one of the major barriers that constrains the performance of phosphoric acid-doped polybenzimidazole (PA/PBI) membrane fuel cells. Herein, we developed new atomically dispersed ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.