Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis
dc.contributor.author | Xu, J. | |
dc.contributor.author | Zhou, H. | |
dc.contributor.author | Shi, K. | |
dc.contributor.author | Yan, R. | |
dc.contributor.author | Tang, Y. | |
dc.contributor.author | Liu, Jian | |
dc.contributor.author | Ye, J. | |
dc.contributor.author | Zhang, D. | |
dc.contributor.author | Fan, T. | |
dc.date.accessioned | 2018-12-13T09:07:35Z | |
dc.date.available | 2018-12-13T09:07:35Z | |
dc.date.created | 2018-12-12T02:46:48Z | |
dc.date.issued | 2017 | |
dc.identifier.citation | Xu, J. and Zhou, H. and Shi, K. and Yan, R. and Tang, Y. and Liu, J. and Ye, J. et al. 2017. Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis. Journal of Materials Chemistry A. 5 (5): pp. 2195-2203. | |
dc.identifier.uri | http://hdl.handle.net/20.500.11937/70759 | |
dc.identifier.doi | 10.1039/c6ta08691h | |
dc.description.abstract |
© The Royal Society of Chemistry. The design of artificial photosynthetic systems (APSs) with hierarchical porosity by taking into account liquid flow and gas transport effects is of high significance. Herein we demonstrate a general and facile strategy to prepare hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable g-C3N4assemblies via bio-directed morphology engineering for enhanced artificial photosynthesis of CO and methane via CO2reduction. Escherichia coli (1D), Papilio nephelus wings (2D, planar) and cole pollen (3D) are adopted for 1D to 3D multiscale assemblies with high surface areas via a two-step transformation process. Moreover, liquid flow and gas diffusion behaviors are investigated using COMSOL computational simulation to reveal the relationship between structural effects and output efficiency theoretically. Such methodology can be extended to realize versatile fabrication of various morph-tunable carbon nitride assemblies. Importantly, this research illustrates the power of combining theoretical calculations and experimental techniques to achieve the controlled design of high efficiency APS and may provide further avenues to APS optimization. | |
dc.publisher | R S C Publications | |
dc.title | Bio-directed morphology engineering towards hierarchical 1D to 3D macro/meso/nanoscopic morph-tunable carbon nitride assemblies for enhanced artificial photosynthesis | |
dc.type | Journal Article | |
dcterms.source.volume | 5 | |
dcterms.source.number | 5 | |
dcterms.source.startPage | 2195 | |
dcterms.source.endPage | 2203 | |
dcterms.source.issn | 2050-7488 | |
dcterms.source.title | Journal of Materials Chemistry A | |
curtin.department | WASM: Minerals, Energy and Chemical Engineering (WASM-MECE) | |
curtin.accessStatus | Fulltext not available |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |