Synthesis of dense MoS2 nanosheet layers on hollow carbon spheres and their applications in supercapacitors and the electrochemical hydrogen evolution reaction
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© the Partner Organisations. Herein, we report the synthesis of hybrid nanostructures obtained by densely growing MoS2 nanosheet layers on hydrophobic hollow carbon spheres (abbreviated as MoS2-HCS) through a solvothermal method. The morphologies and compositions of the MoS2-HCS hybrid are well investigated. The electrochemical performance of the MoS2-HCS sphere is investigated in both supercapacitors and the hydrogen evolution reaction. The MoS2-HCS exhibits a larger specific capacitance of 334 F g-1 than the bare MoS2 of 204 F g-1 at 1 A g-1, an improved rate capability of 86% from 1 to 20 A g-1 and a stable cycling performance of 87% capacitance retention after 5000 cycles when assembled in a supercapacitor. In addition, MoS2-HCS also show enhanced electrocatalytic activity for the electrochemical hydrogen evolution reaction in acidic media.