Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Timing gamma-ray pulsars with the FERMI large area telescope: timing noise and astrometry

    Access Status
    Open access via publisher
    Authors
    Kerr, M.
    Ray, P.
    Johnston, S.
    Shannon, Ryan
    Camilo, F.
    Date
    2015
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kerr, M. and Ray, P. and Johnston, S. and Shannon, R. and Camilo, F. 2015. Timing gamma-ray pulsars with the FERMI large area telescope: timing noise and astrometry. Astrophysical Journal. 814 (2): Article ID 128.
    Source Title
    Astrophysical Journal
    DOI
    10.1088/0004-637X/814/2/128
    ISSN
    0004-637X
    School
    Curtin Institute of Radio Astronomy (Physics)
    URI
    http://hdl.handle.net/20.500.11937/7085
    Collection
    • Curtin Research Publications
    Abstract

    We have constructed timing solutions for 81 γ-ray pulsars covering more than five years of Fermi data. The sample includes 37 radio-quiet or radio-faint pulsars which cannot be timed with other telescopes. These timing solutions and the corresponding pulse times of arrival are prerequisites for further study, e.g., phase-resolved spectroscopy or searches for mode switches. Many γ-ray pulsars are strongly affected by timing noise (TN), and we present a new method for characterizing the noise process and mitigating its effects on other facets of the timing model. We present an analysis of TN over the population using a new metric for characterizing its strength and spectral shape, namely, its time-domain correlation. The dependence of the strength ν and n is in good agreement with previous studies. We find that noise process power spectra S(f) for unrecycled pulsars are steep, with strong correlations over our entire data set and spectral indices S(f) α f- α of a ~ 5-9. One possible explanation for these results is the occurrence of unmodeled, episodic "microglitches." Finally, we show that our treatment of TN results in robust parameter estimation, and in particular we measure a precise timing position for each pulsar. We extensively validate our results with multi-wavelength astrometry, and using our updated position, we firmly identify the X-ray counterpart of PSR J1418-6058.

    Related items

    Showing items related by title, author, creator and subject.

    • Assessing the role of spin noise in the precision timing of millisecond pulsars
      Shannon, Ryan; Cordes, J. (2010)
      We investigate rotational spin noise (referred to as timing noise) in non-accreting pulsars: millisecond pulsars, canonical pulsars, and magnetars. Particular attention is placed on quantifying the strength and non-stationarity ...
    • Limitations in timing precision due to single-pulse shape variability in millisecond pulsars
      Shannon, R.; Oslowski, S.; Dai, S.; Bailes, M.; Hobbs, G.; Manchester, R.; van Straten, W.; Raithel, C.; Ravi, V.; Toomey, L.; Bhat, Ramesh; Burke-Spolaor, S.; Coles, W.; Keith, M.; Kerr, M.; Levin, Y.; Sarkissian, J.; Wang, J.; Wen, L.; Zhu, X. (2014)
      High-sensitivity radio-frequency observations of millisecond pulsars usually show stochastic, broad-band, pulse-shape variations intrinsic to the pulsar emission process. These variations induce jitter noise in pulsar ...
    • Searching for pulsars using image pattern recognition
      Zhu, W.; Berndsen, A.; Madsen, E.; Tan, M.; Stairs, I.; Brazier, A.; Lazarus, P.; Lynch, R.; Scholz, P.; Stovall, K.; Ransom, S.; Banaszak, S.; Biwer, C.; Cohen, S.; Dartez, L.; Flanigan, J.; Lunsford, G.; Martinez, J.; Mata, A.; Rohr, M.; Walker, A.; Allen, B.; Bhat, Ramesh; Bogdanova, S.; Camilo, F.; Chatterjee, S.; Cordes, J.; Crawford, F.; Deneva, J.; Desvignes, G.; Ferdman, R.; Freire, P.; Hessels, J.; Jenet, F.; Kaplan, D.; Kaspi, V.; Knispel, B.; Lee, K.; van Leeuwen, J.; Lyne, A.; McLaughlin, M.; Siemens, X.; Spitler, L.; Venkataraman, A. (2014)
      In the modern era of big data, many fields of astronomy are generating huge volumes of data, the analysis of which can sometimes be the limiting factor in research. Fortunately, computer scientists have developed powerful ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.