High flux, positively charged loose nanofiltration membrane by blending with poly (ionic liquid) brushes grafted silica spheres
Access Status
Authors
Date
2015Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 Elsevier B.V. Silica spheres modified by poly (ionic liquid) brushes, a novel positively charged nanomaterial is prepared by atom transfer radical polymerization (ATRP). A high flux positively charged loose nanofiltration membrane is fabricated via "blending-phase inversion" method. The morphology structures, hydrophilicity, thermal and mechanical properties, permeation performance of these membranes are investigated in detail. The results reveal that the hybrid membranes have enhanced surface hydrophilicity, water permeability, thermal stability, and mechanical properties. Characterization of membrane separation properties shows that the hybrid membranes possess higher salt permeability and relatively higher rejection for reactive dyes, which may open opportunities for the recycling of reactive dyes wastewater. Moreover, such hybrid membranes have an outstanding operational stability and salts concentration showed little effect on the separation properties.
Related items
Showing items related by title, author, creator and subject.
-
Rajaeian, Babak (2012)Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
-
Gutierrez, L.; Keucken, A.; Aubry, C.; Zaouri, N.; Teychene, B.; Croue, Jean-Philippe (2018)This study analyzed the change in nanomechanical properties of ultrafiltration hollow fiber membranes harvested from pilot-scale units after twelve months of operation. Quantitative Nanomechanical Mapping technique was ...
-
Khor, Ee Huey (2011)The accuracy of oil-in-water analysis for produced water is increasingly crucial as the regulations for disposal of this water are getting more stringent world wide. Currently, most of the oil producing countries has ...