Show simple item record

dc.contributor.authorLewis, R.
dc.contributor.authorPaláncz, B.
dc.contributor.authorAwange, Joseph
dc.date.accessioned2018-12-13T09:08:08Z
dc.date.available2018-12-13T09:08:08Z
dc.date.created2018-12-12T02:46:43Z
dc.date.issued2018
dc.identifier.citationLewis, R. and Paláncz, B. and Awange, J. 2018. Solving geoinformatics parametric polynomial systems using the improved Dixon resultant. Earth Science Informatics. 12 (2): pp. 229-239.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/70927
dc.identifier.doi10.1007/s12145-018-0366-2
dc.description.abstract

Improvements in computational and observational technologies in geoinformatics, e.g., the use of laser scanners that produce huge point cloud data sets, or the proliferation of global navigation satellite systems (GNSS) and unmanned aircraft vehicles (UAVs), have brought with them the challenges of handling and processing this “big data”. These call for improvement or development of better processing algorithms. One way to do that is integration of symbolically presolved sub-algorithms to speed up computations. Using examples of interest from real geoinformatic problems, we will discuss the Dixon-EDF resultant as an improved resultant method for the symbolic solution of parametric polynomial systems. We will briefly describe the method itself, then discuss geoinformatics problems arising in minimum distance mapping (MDM), parameter transformations, and pose estimation essential for resection. Dixon-EDF is then compared to older notions of “Dixon resultant”, and to several respected implementations of Gröbner bases algorithms on several systems. The improved algorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude, in both CPU usage and RAM usage. It can solve geoinformatics problems on which the other methods fail, making symbolic solution of parametric systems feasible for many problems.

dc.publisherSpringer
dc.titleSolving geoinformatics parametric polynomial systems using the improved Dixon resultant
dc.typeJournal Article
dcterms.source.issn1865-0473
dcterms.source.titleEarth Science Informatics
curtin.note

The final publication is available at Springer via http://dx.doi.org/10.1007/s12145-018-0366-2

curtin.departmentSchool of Earth and Planetary Sciences (EPS)
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record