Biomimetic material functionalized mixed matrix membranes for enhanced carbon dioxide capture
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 The Royal Society of Chemistry. Carbonic anhydrase (CA) has been widely used in gas separation membranes because of its high affinity for CO2molecules. In this work, a novel biomimetic material (Co-2,6-bis(2-benzimidazolyl)pyridine, CoBBP) which has a similar molecular structure to the CA enzyme but with higher stability and a lower price was successfully synthesized. The excellent thermal stability, dispersibility and high CO2selectivity make CoBBP a promising alternative to CA. Then, a series of Pebax-CoBBP mixed matrix membranes were constructed to explore their capability for CO2/N2separation. Compared to the pristine Pebax-1657, the Pebax-CoBBP mixed matrix membrane with the optimized 1.33 wt% CoBBP loading showed an improved CO2permeability of 675.5 barrer and a CO2/N2selectivity of 62, surpassing the Robeson upper bound (2008). Furthermore, the hydrogen bonds between CoBBP and polyamide chains improved the chain stiffness of the linear glassy polymer, ensuring good operational mechanical stability. In short, this work could provide a promising method to exploit alternatives to the CA enzyme and to fabricate biomimetic membranes.
Related items
Showing items related by title, author, creator and subject.
-
Saeed, Asim (2012)Among different types of membrane modules used for cross flow filtration processes, Spiral Wound Module (SWM) dominates in the area of Ultra Filtration (UF), Nano Filtration (NF) and RO (Reverse Osmosis) due to high packing ...
-
Rajaeian, Babak (2012)Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...
-
Nasir, Subriyer (2007)Reverse Osmosis (RO) is widely accepted as an alternative method to produce freshwater from different feed water sources. This technology competitively substitutes the thermal processes in the near future because of several ...