Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2016 Elsevier B.V. Solvent resistant nanofiltration (SRNF) technology is an energy efficient and environmentally friendly alternative to purify alcohol-based mixtures, but there exists a challenge in overcoming the trade-off between membrane flux and rejection. Herein, as the representative of the emerging family of MXenes, Ti3C2Tx nanosheets with abundant -OH groups are chosen as nanofillers to prepare SRNF composite membrane after being incorporated into two typical polymer matrixes: hydrophilic polyethyleneimine (PEI) and hydrophobic polydimethylsiloxane (PDMS). Systematic characterizations and measurements suggest that the uniformly dispersed Ti3C2Tx nanosheets enhance the thermal/mechanical stabilities and solvent resistance for both polymer-based membranes through steric effects and/or interfacial interactions. Besides, the horizontally-lied Ti3C2Tx nanosheets give significant promotion on the transfer of alcohol molecules by providing additional pathways along nanosheet surface using -OH as adsorption site. Particularly, they afford improvements of alcohol flux as high as 30% to PEI-based membrane and 162% to PDMS-based membrane. Meanwhile, the rejection abilities are dramatically improved with MWCOs below 200 Da due to the blockage of solute transfer by the nanosheets. These results indicate that the trade-off between alcohol flux and solute rejection is readily overcome. The transfer properties of weak- or non-polar solvents and the long-term operation stability of membranes are also explored.
Related items
Showing items related by title, author, creator and subject.
-
Dong, G.; Hou, J.; Wang, J.; Zhang, Y.; Chen, V.; Liu, Jian (2016)© 2016 Elsevier B.V. Computational simulations have suggested the enormous potential of using porous graphene-based materials for gas separation. However, this has yet to be demonstrated in a continuous and macroscopic ...
-
Xing, L.; Song, J.; Li, Z.; Liu, Jian; Huang, T.; Dou, P.; Chen, Y.; Li, X.; He, T. (2016)© 2016 Elsevier B.V. Loss of organic extraction in membrane extraction process could be avoided by using an ion permeable, solvent stable barrier membrane. Development of solvent stable materials has been a key issue for ...
-
Rajaeian, Babak (2012)Thin film composite (TFC) membranes have long been used by many large-scale applications (i.e., water and wastewater treatment). Recently, conventional polymeric TFC membranes are facing with short longevity due to high ...