Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Excited Triplet State Interactions of Fluoroquinolone Norfloxacin with Natural Organic Matter: A Laser Spectroscopy Study

    Access Status
    Fulltext not available
    Authors
    Niu, X.
    Moore, E.
    Croue, Jean-Philippe
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Niu, X. and Moore, E. and Croue, J. 2018. Excited Triplet State Interactions of Fluoroquinolone Norfloxacin with Natural Organic Matter: A Laser Spectroscopy Study. Environmental Science and Technology. 52 (18): pp. 10426-10432.
    Source Title
    Environmental Science and Technology
    DOI
    10.1021/acs.est.8b02835
    ISSN
    0013-936X
    School
    Curtin Water Quality Research Centre
    URI
    http://hdl.handle.net/20.500.11937/71042
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 American Chemical Society. In sunlit waters, the fate of fluoroquinolone antibiotics is significantly impacted by photodegradation. The mechanism of how natural organic matter (NOM) participates in the reaction has been frequently studied but still remains unclear. In this work, the interactions between the excited triplet state of the fluoroquinolone antibiotic norfloxacin (3NOR*) and a variety of NOM extracts were investigated using time-resolved laser spectroscopy. The observed transient absorption spectrum of 3NOR* showed a maximum at ca. 600 nm, and global fitting gave a lifetime of 1.0 µs for 3NOR* in phosphate buffer at pH = 7.5. Quenching of 3NOR* by Suwannee River hydrophobic acids (HPO), Beaufort River HPO, and Gartempe River HPO yielded rate constants of 1.8, 2.6, and 4.5 (×107 molC-1 s-1) respectively, whereas HPO from South Platte River unexpectedly increased the lifetime of 3NOR* with an as yet unknown mechanism. Concurrent photodegradation experiments of NOR (5 µM) in the presence of these NOM were also performed using a sunlight simulator. In general, the effects of NOM on the photodegradation rate of NOR were in agreement with observations from transient absorption studies. We suggest that adsorption of NOR to NOM is one of the major factors contributing to the observed quenching. These results yield a new insight into the likely role of NOM in sunlight-induced degradation of micropollutants.

    Related items

    Showing items related by title, author, creator and subject.

    • Tectono-morphological evolution of the Cauvery, Vaigai, and Thamirabarani River basins: Implications on timing, stratigraphic markers, relative roles of intrinsic and extrinsic factors, and transience of Southern Indian landscape
      Ramkumar, M.; Santosh, M.; Rahaman, S.M.A.; Balasundareshwaran, A.; Balasubramani, K.; Mathew, M.J.; Sautter, B.; Siddiqui, N.; Usha, K.P.; Sreerhishya, K.; Prithiviraj, G.; Ramasamy, Nagarajan ; Thirukumaran, V.; Menier, D.; Kumaraswamy, K. (2019)
      © 2019 John Wiley & Sons, Ltd. Peninsular India is an amalgam of transient landscapes evolved from the interactions between tectonic and climatic forcings. In order to appraise the tectono-geomorphic evolution of South ...
    • Freshwater cyanoprokaryota blooms in the Swan Coastal Plain wetlands: ecology, taxonomy and toxicology
      Kemp, Annabeth S. (2009)
      Relatively little published information on cyanoprokaryote (blue-green algal) blooms in the freshwater wetlands in Western Australia is available. There has been little research on the urban lakes and rivers, examining ...
    • Assessment of the health of the Swan-Canning river system using biochemical markers of exposure of fish
      Webb, Diane (2005)
      Most environmental studies concerning the environmental health of the Swan- Canning River system have focussed on nutrient inputs from both rural and urban catchments that are the cause of algal blooms. On occasions these ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.