Hydrogen sorption in TiZrNbHfTa high entropy alloy
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Elsevier B.V. High Entropy Alloys (HEA), where five or more elements are mixed together in near equiatomic ratios offer promising properties as hydrogen storage materials due to their ability to crystallize in simple cubic structures in the presence of large lattice strain originating from the different sizes of the atoms. In this work, the hydrogen absorption and desorption as well as the cycling properties of the TiZrNbHfTa HEA have been studied by in situ Synchrotron X-Ray diffraction, Pressure-Composition-Isotherm, Thermal Desorption Spectroscopy and Differential Scanning Calorimetry. The alloy crystallizes in a cubic bcc phase and undergoes a two-stage hydrogen absorption reaction to a fcc dihydride phase with an intermediate tetragonal monohydride, very similar to the V-H system. The hydrogen absorption/desorption in TiZrNbHfTa is completely reversible and the activation energy of desorption could be calculated. Furthermore, we have observed an interesting macrostructure following parallel planes after the formation of the dihydride phase, which is retained after desorption.
Related items
Showing items related by title, author, creator and subject.
-
Sheppard, Drew A (2008)Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. ...
-
Murshidi, Julie Andrianny (2012)Concerns about the impact that fossil fuels have on the environment and their increasing price to the consumer have led to research being undertaken to evaluate and refine other energy carriers that will be comparable to ...
-
Saldan, I.; Hino, S.; Humphries, Terry; Zavorotynska, O.; Chong, M.; Jensen, C.; Deledda, S.; Hauback, B. (2014)The decomposition and rehydrogenation of ?-Mg(BH4)2 ball milled together with 2 mol % of Ni-based additives, Ninano, NiCl2, NiF2, and Ni3B, has been investigated during one hydrogen desorption-absorption cycle. Under the ...