Crystal growth of apatite by replacement of an aragonite precursor
Access Status
Authors
Date
2010Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The replacement of aragonite by apatite is a process that occurs naturally during diagenesis, chemical weathering and natural hydrothermal reactions and is artificially promoted in medical sciences for use of the product material as a bone implant. We have investigated the mechanism and the kinetics of this replacement by using biogenic aragonite (cuttlebone of the Sepia officinalis) as a starting material and reacting it with di-ammonium hydrogen phosphate solution. Isothermal experiments were carried out over a range of temperatures up to 190 °C. Quantification of each solid phase, for different reaction times, was obtained by the Rietveld analysis of powder X-ray diffraction patterns. An empirical activation energy was calculated by using two different approaches to analyze the data. Scanning electron microscopy showed that the fine structure of the cuttlebone was perfectly retained even after aragonite had been completely converted to apatite. We present a detailed investigation of the kinetics of a reaction that involves interaction of a solid phase with an aqueous fluid and leads to a pseudomorphic replacement of the initial solid phase by a new, chemically different, phase. This replacement process is described in terms of an interface-coupled dissolutionreprecipitation mechanism. © 2010 Elsevier B.V.
Related items
Showing items related by title, author, creator and subject.
-
Perdikouri, C.; Piazolo, S.; Kasioptas, A.; Schmidt, B.; Putnis, Andrew (2013)The hydrothermal transformation of single aragonite crystals into polycrystalline calcite has been studied under hydrothermal conditions. The transformation involves a fluid-mediated replacement reaction, associated with ...
-
Perdikouri, C.; Kasioptas, A.; Geisler, T.; Schmidt, B.; Putnis, Andrew (2011)The experimental replacement of aragonite by calcite was studied under hydrothermal conditions at temperatures between 160 and 200 °C using single inorganic aragonite crystals as a starting material. The initial saturation ...
-
Putnis, Andrew; Austrheim, H. (2013)© Springer-Verlag Berlin Heidelberg 2013. Metamorphism and metasomatism both involve the re-equilibration of mineral assemblages due to changes in pressure, temperature and/or chemical environment. Both processes involve ...