Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing ‘vital-effects’

    Access Status
    Fulltext not available
    Authors
    D'Olivo, J.
    Sinclair, D.
    Rankenburg, Kai
    McCulloch, M.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    D'Olivo, J. and Sinclair, D. and Rankenburg, K. and McCulloch, M. 2018. A universal multi-trace element calibration for reconstructing sea surface temperatures from long-lived Porites corals: Removing ‘vital-effects’. Geochimica Et Cosmochimica Acta. 239: pp. 109-135.
    Source Title
    Geochimica Et Cosmochimica Acta
    DOI
    10.1016/j.gca.2018.07.035
    ISSN
    0016-7037
    School
    John de Laeter Centre
    URI
    http://hdl.handle.net/20.500.11937/71149
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 Elsevier Ltd Trace element abundances in corals can potentially provide high-resolution seasonally resolved constraints on past sea-surface temperatures, much needed to improve our understanding of climate variability on interannual to centennial time scales. A major limitation to the general application of trace element (TE) paleo-thermometers to coral fossil records is the presence of ‘vital effects’ which result in the need for colony-specific temperature calibrations. Here we demonstrate that reliable proxy temperatures from massive Porites corals can be achieved by using a universal multi-trace element calibration scheme (UMTECS). Using modern massive Porites corals living in well characterized sea surface temperature (SST) environments we first confirm that Sr/Ca and Li/Mg ratios are the most robust SST proxies compared to other trace element ratios (Mg/Ca, U/Ca, B/Ca and Li/Ca). Importantly we find that the slopes (and intercepts) of the Sr/Ca vs SST relationship are linearly correlated with the slopes from the Li/Mg vs SST relationship and provide a simple mathematical explanation for this phenomenon based on the tendency for all coral data to cluster around a single common ‘centroid’. Based on this tight empirical correlation between Sr/Ca and Li/Mg thermometers we show that a ‘universal’ calibration strategy can be applied that largely circumvents ‘vital effects’. Using this approach, we show that accurate more reliable reconstructions of paleo-temperatures can be undertaken using fossil Porites corals without the need for a priori colony-specific temperature calibrations. The general viability of this approach is demonstrated using an independent set of coral data where we show that UMTECS outperforms other ‘aggregating’ calibration techniques. For P. lutea and P. lobata the scheme produces temperature estimates with root-mean-square errors (RMSE) that are only 0.3 °C larger than those using colony-specific calibrations. This compares with ‘averaged TE-SST calibrations’ which produce RMSEs between 0.4 and 0.6 °C larger than colony-specific calibrations for P. lutea and P. lobata. However, we note that the success of our approach diminishes where data for individual corals deviate markedly from the common centroid, which appear to be related to species differences.

    Related items

    Showing items related by title, author, creator and subject.

    • The distribution of the thermally tolerant symbiont lineage (Symbiodinium clade D) in corals from Hawaii: Correlations with host and the history of ocean thermal stress
      Stat, Michael; Pochon, X.; Franklin, E.; Bruno, J.; Casey, K.; Selig, E.; Gates, R. (2013)
      Spatially intimate symbioses, such as those between scleractinian corals and unicellular algae belonging to the genus Symbiodinium, can potentially adapt to changes in the environment by altering the taxonomic composition ...
    • Differential response of corals to regional mass-warming events as evident from skeletal Sr/Ca and Mg/Ca ratios
      Clarke, H.; D'Olivo, J.; Falter, J.; Zinke, Jens; Lowe, R.; McCulloch, M. (2017)
      During the summer of 2010/2011, a regional marine heat wave resulted in coral bleaching of variable severity along much of the western coastline of Australia. At Ningaloo Reef, a 300 km long fringing reef system and World ...
    • Borneo coral reefs subject to high sediment loads show evidence of resilience to various environmental stressors
      Browne, Nicola ; Braoun, C.; McIlwain, Jennifer ; Ramasamy, Nagarajan ; Zinke, Jens (2019)
      Copyright © 2019 Browne et al. For reefs in South East Asia the synergistic effects of rapid land development, insufficient environmental policies and a lack of enforcement has led to poor water quality and compromised ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.