Inference of Term Structure Models
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISBN
School
Collection
Abstract
© 2016 IEEE. Compared with deterministic models, the key feature of a stochastic differential equation (SDE) model is its ability to generate a large number of different trajectories. To tackle the challenge, a number of methods have been proposed to infer reliable estimates. But these methods dominantly used the explicit methods for solving SDEs, and thus are not appropriate to deal with experimentaldata with large variations. In this work we develop a new method by using implicit methods to solve SDEs, which is aimed at generating stable simulations for stiff SDE models. The particle swarm optimization method is used as an efficient searching method to explore the optimal estimate in the complex parameter space. Using the interest term structure model as the test system, numerical results showed that the proposed new method is an effective approach for generating reliable estimates of unknown parameters in SDE models.
Related items
Showing items related by title, author, creator and subject.
-
Alkroosh, Iyad Salim Jabor (2011)This thesis presents the development of numerical models which are intended to be used to predict the bearing capacity and the load-settlement behaviour of pile foundations embedded in sand and mixed soils. Two artificial ...
-
Lo, Johnny Su Hau (2011)The determination of the zenith wet delay (ZWD) component can be a difficult task due to the dynamic nature of atmospheric water vapour. However, precise estimation of the ZWD is essential for high-precision Global ...
-
Marinelli, Marco Antonio (2011)Important economic and environmental decisions are routinely based on spatial/ temporal models. This thesis studies the uncertainty in the predictions of three such models caused by uncertainty propagation. This is ...