Show simple item record

dc.contributor.authorSairi, M.
dc.contributor.authorStrutwolf, J.
dc.contributor.authorMitchell, R.
dc.contributor.authorSilvester, Debbie
dc.contributor.authorArrigan, Damien
dc.date.accessioned2017-01-30T10:57:44Z
dc.date.available2017-01-30T10:57:44Z
dc.date.created2013-09-23T20:01:17Z
dc.date.issued2013
dc.identifier.citationSairi, Masniza and Strutwolf, Jorg and Mitchell, Rowan and Silvester, Debbie and Arrigan, Damien. 2013. Chronoamperometric response at nanoscale liquid–liquid interface arrays. Electrochimica Acta. 101: pp. 177-185.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/7121
dc.identifier.doi10.1016/j.electacta.2012.11.062
dc.description.abstract

In this work, potential step chronoamperometry (PSCA) was used to study the behaviour of arrays of nanoscale interfaces between two immiscible electrolyte solutions (nanoITIES). The nanoITIES arrays were formed at nanoporous silicon nitride membranes containing 400 nanopores in a hexagonal close-packed arrangement. Three membrane designs, with nanopore radii of 75, 50 and 17 nm, were studied by ion-transfer of tetrapropylammonium cations across the nanopore array-supported water|1,6-dichlorohexane interface. The cell time constants and charging times were determined prior to experimental PSCA. The three membrane designs studied exhibited charging times in the range of 0.08–0.46 s, with the smallest pore configuration (17 nm radius) exhibiting the longest charging time. The experimental steady-state currents were 30–50% lower than of the calculated inlaid disc model currents, due to diffusion zone overlap at adjacent interfaces. The three nano-interface arrays studied also showed response times of 6 ± 1 s, being the time required to reach 95% of the steady-state current.

dc.publisherPergamon
dc.subjectCharging time
dc.subjectResponse time
dc.subjectnanoITIES arrays
dc.subjectPotential step chronoamperometry
dc.subjectSilicon nitride membranes
dc.titleChronoamperometric response at nanoscale liquid–liquid interface arrays
dc.typeJournal Article
dcterms.source.volume101
dcterms.source.startPage177
dcterms.source.endPage185
dcterms.source.issn0013-4686
dcterms.source.titleElectrochimica Acta
curtin.note

NOTICE: this is the author’s version of a work that was accepted for publication in Electrochimica Acta. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Electrochimica Acta, Vol. 101 (2013). DOI: 10.1016/j.electacta.2012.11.062

curtin.department
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record