Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Evaluation of different hydrate prediction software and impact of different MEG products on gas hydrate formation and inhibition

    Access Status
    Fulltext not available
    Authors
    AlHarooni, K.
    Barifcani, Ahmed
    Pack, D.
    Iglauer, Stefan
    Date
    2016
    Type
    Conference Paper
    
    Metadata
    Show full item record
    Citation
    AlHarooni, K. and Barifcani, A. and Pack, D. and Iglauer, S. 2016. Evaluation of different hydrate prediction software and impact of different MEG products on gas hydrate formation and inhibition, pp. 1575-1584.
    Source Title
    Offshore Technology Conference Asia 2016, OTCA 2016
    ISBN
    9781510830721
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/71268
    Collection
    • Curtin Research Publications
    Abstract

    © 2016, Offshore Technology Conference New hydrate profile correlations for methane gas hydrates were obtained computationally (using three different hydrate prediction software packages) and experimentally (with three different MEG products from different suppliers). Methane gas with pure distilled water was the benchmark case used for the software comparison at pressures of 50 to 300 bar. In order to compare the hydrate inhibition performance of the MEG products, aqueous 10 wt% MEG solutions were tested using the isobaric method at a pressure range of 50 to 200 bar. Furthermore, the kinetics of MEG hydrate inhibition were studied experimentally for methane gas using a stirred cryogenic sapphire cell. Hydrate formation start, hydrate dissociation initiation and hydrate dissociation end points were identified and analysed. The results were correlated with the hydrate formation start points predicted by three well known selected hydrate prediction software packages (which all use the Peng-Robinson equation of state). Moreover, the hydrate inhibition performance of the three MEG products was evaluated to determine the superior MEG product that provides the best hydrate inhibition performance. Our analysis shows that the hydrate formation points predicted computationally are not identical to the hydrate formation start points measured in this work. Software A and software B predicted results matching with the average curve of the experimental hydrate formation start and hydrate dissociation start points, and with a deviation value of 0.06 °C for software A and a deviation value of 0.03 °C for software B. However, software C predicted results almost identical with the experimental dissociation start points, and with an average deviation value of 0.54 °C. The methane gas hydrate profiles for the three different MEG products (X-MEG, Y-MEG and Z-MEG) indicated that X-MEG was the most efficient inhibitor as it shifted the hydrate curve most to the left; X-MEG shifted the hydrate formation curve by an average temperature of 2.07 °C when compared to the benchmark curve (100% water); while Z-MEG shifted the curve by an average temperature of 1.81 °C and Y-MEG shifted the curve by an average temperature of 1.71 °C. We conclude that not all software packages predict the same results although they are all based on the same equation of state. Furthermore not all MEG products supplied have the same hydrate inhibition efficiency. Importantly, choosing the best MEG supplier will reduce the OPEX by reducing the amount of MEG used, and it will accommodate more relaxed operating conditions of lower temperatures and higher pressures.

    Related items

    Showing items related by title, author, creator and subject.

    • Inhibition effects of thermally degraded MEG on hydrate formation for gas systems
      AlHarooni, K.; Barifcani, Ahmed; Pack, David; Gubner, Rolf; Ghodkay, Varun (2015)
      © 2015 Elsevier B.V. Mono-ethylene glycol (MEG) is used as a hydrate inhibitor in gas processing plants and transportation pipelines. Due to its high cost, large consumption rate, and its environmental impact, regenerating ...
    • Gas hydrate formation and dissociation numerical modelling with nitrogen and carbon dioxide
      Smith, C.; Barifcani, Ahmed; Pack, D. (2015)
      This work aims at providing experimental data for various methane-based hydrates, namely nitrogen and carbon dioxide gas mixtures with varying concentrations to provide an empirically based hydrate equilibrium model. ...
    • Tetrahydrofuran and natural gas hydrates formation in the presence of various inhibitors
      Rojas González, Yenny V. (2011)
      The aim of this thesis is to investigate the formation process of tetrahydrofuran (THF) hydrates and natural gas hydrates, and the effect of kinetic hydrate inhibitors (KHIs) on the formation and growth of these hydrates. ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.