General methodology to estimate the dislocation density from microhardness measurements
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Elsevier Inc. A general methodology to estimate dislocation density in cubic metals using microhardness measurements has been established. The proposed methodology is based on the Indention Size Effect (ISE) and microstructural strengthening mechanisms. The methodology was validated using published experimental data of a pure Nickel (FCC) and Tungsten (BCC), as well as our own data on dual phase (BCC and FCC) lean duplex stainless steel 2101(LDSS 2101). The estimations of dislocation densities for LDSS 2101 phases were confirmed via X-ray diffraction measurements. Our results collectively validated the proposed approach as a general method to estimate dislocation density with acceptable accuracy.
Related items
Showing items related by title, author, creator and subject.
-
Reddy, Steven; Timms, Nicholas Eric; Pantleon, W.; Trimby, P. (2007)The deformation-related microstructure of an Indian Ocean zircon hosted in a gabbro deformed at amphibolite grade has been quantified by electron backscatter diffraction. Orientation mapping reveals progressive variations ...
-
Billia, M.; Timms, Nicholas Eric; Toy, V.; Hart, R.; Prior, D. (2013)Quartzofeldspathic ultramylonites from the Alpine Fault Zone, one of the world's major, active plate boundary-scale fault zones have quartz crystallographic preferred orientations (CPO) and abundant low-angle (<10° ...
-
Mamuse, Antony (2010)The Kalgoorlie Terrane of the Yilgarn Craton, Western Australia, containing about 60% (~11 Mt) of the world’s known komatiite-hosted nickel sulphide resources, is the world’s best studied and economically most important ...