Structure and Hydrogenation Properties of a HfNbTiVZr High-Entropy Alloy
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 American Chemical Society. A high-entropy alloy (HEA) of HfNbTiVZr was synthesized using an arc furnace followed by ball milling. The hydrogen absorption mechanism was studied by in situ X-ray diffraction at different temperatures and by in situ and ex situ neutron diffraction experiments. The body centered cubic (BCC) metal phase undergoes a phase transformation to a body centered tetragonal (BCT) hydride phase with hydrogen occupying both tetrahedral and octahedral interstitial sites in the structure. Hydrogen cycling of the alloy at 500 °C is stable. The large lattice strain in the HEA seems favorable for absorption in both octahedral and tetrahedral sites. HEAs therefore have potential as hydrogen storage materials because of favorable absorption in all interstitial sites within the structure.
Related items
Showing items related by title, author, creator and subject.
-
Sheppard, Drew A (2008)Concerns over green house gas emissions and their climate change effects have lead to a concerted effort into environmental friendly technologies. One such emphasis has been on the implementation of the hydrogen economy. ...
-
Kowalczyk, Poitr; Tanaka, H.; Holyst, R.; Kaneko, K.; Ohmori, T.; Miyamoto, J. (2005)Grand canonical Monte Carlo (GCMC) simulations were used for the modeling of the hydrogen adsorption in idealized graphite slitlike pores. In all simulations, quantum effects were included through the Feynman and Hibbs ...
-
Murshidi, Julie Andrianny (2012)Concerns about the impact that fossil fuels have on the environment and their increasing price to the consumer have led to research being undertaken to evaluate and refine other energy carriers that will be comparable to ...