An impact melt origin for Earth’s oldest known evolved rocks
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Earth’s oldest evolved (felsic) rocks, the 4.02-billion-year-old Idiwhaa gneisses of the Acasta Gneiss Complex, northwest Canada, have compositions that are distinct from the felsic rocks that typify Earth’s ancient continental nuclei, implying that they formed through a different process. Using phase equilibria and trace element modelling, we show that the Idiwhaa gneisses were produced by partial melting of iron-rich hydrated basaltic rocks (amphibolites) at very low pressures, equating to the uppermost ~3 km of a Hadean crust that was dominantly mafic in composition. The heat required for partial melting at such shallow levels is most easily explained through meteorite impacts. Hydrodynamic impact modelling shows not only that this scenario is physically plausible, but also that the region of shallow partial melting appropriate to formation of the Idiwhaa gneisses would have been widespread. Given the predicted high flux of meteorites in the late Hadean, impact melting may have been the predominant mechanism that generated Hadean felsic rocks.
Related items
Showing items related by title, author, creator and subject.
-
Korhonen, Fawna; Saito, S.; Brown, M.; Siddoway, C. (2010)The Fosdick migmatite–granite complex in West Antarctica records evidence for crustal melting during two periods of tectonism along the East Gondwana margin. Initial high-temperature metamorphism in the Devonian–Carboniferous ...
-
Huang, X.; Wilde, Simon; Zhong, J. (2013)The Dengfeng and Taihua Complexes are well-exposed Neoarchean to Paleoproterozoic units in the southern segment of the Trans-North China Orogen (TNCO). Zircon U–Pb dating shows that the Dengfeng Complex records two episodes ...
-
Johnson, Tim; Brown, M.; Goodenough, K.; Clark, Christopher; Kinny, Peter; White, R. (2016)The Lewisian Complex of NW Scotland is a fragment of the North Atlantic Craton. It comprises mostly Archean tonalite–trondhjemite–granodiorite (TTG) orthogneisses that were variably metamorphosed and reworked in the late ...