Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction

    Access Status
    Fulltext not available
    Authors
    Dang, J.
    Zhao, L.
    Zhang, J.
    Liu, Jian
    Wang, J.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Dang, J. and Zhao, L. and Zhang, J. and Liu, J. and Wang, J. 2018. Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction. Journal of Membrane Science. 545: pp. 88-98.
    Source Title
    Journal of Membrane Science
    DOI
    10.1016/j.memsci.2017.09.062
    ISSN
    0376-7388
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/71821
    Collection
    • Curtin Research Publications
    Abstract

    © 2017 Elsevier B.V. Polymer electrolyte membrane (PEM) with high loading, stable ion solvents remains challenging at present and significantly impedes its practical application in energy-relevant devices including hydrogen fuel cell. Here, a series of imidazole microcapsules (ImMCs) are synthesized and utilized as distinct reservoirs to access high phosphoric acid retention for PEM. We demonstrate that the ImMCs can significantly enhance the acid loading capability using the large lumens, bringing abundant proton-hopping sites and hence significantly enhanced proton conduction of membrane. In particular, 10 wt% ImMCs can afford a 78 wt% phosphoric acid loading and a consequent 75 times' increase of proton conductivity relative to the control membrane. Additionally, the cross-linked imidazole shells render membrane high acid retention ability. The acid release is almost stopped after immersing in water for 40 min, helping the membrane to retain as high as 62% of the initially loaded phosphoric acid. These features readily impart notably boosted hydrogen fuel cell performances to composite membrane under the desired conditions of elevated temperature and reduced humidity. As a further description, the acid retention and proton conduction properties of membrane can be efficiently tailored by adjusting microcapsule architectures (lumen size and shell thickness).

    Related items

    Showing items related by title, author, creator and subject.

    • In situ formed phosphoric acid/phosphosilicate nanoclusters in the exceptional enhancement of durability of polybenzimidazole membrane fuel cells at elevated high temperatures
      Zhang, J.; Aili, D.; Bradley, J.; Kuang, H.; Pan, C.; De Marco, Roland; Li, Q.; Jiang, S. (2017)
      © 2017 The Electrochemical Society. Most recently, we developed a phosphotungstic acid impregnated mesoporous silica (PWA-meso-silica) and phosphoric acid doped polybenzimidazole (PA/PBI) composite membrane for use in ...
    • Amino-functionalized mesoporous silica based polyethersulfone-polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells
      Zhang, Jin; Lu, S.; Zhu, H.; Chen, Kongfa; Xiang, Y.; Liu, Jian; Forsyth, M.; Jiang, San Ping (2016)
      It is important to find alternative membranes to the state-of-the-art polybenzimidazole based high temperature proton exchange membranes with high proton conductivity at elevated temperature but with simple synthesis ...
    • Synergistic proton transfer through nanofibrous composite membranes by suitably combining proton carriers from the nanofiber mat and pore-filling matrix
      He, Y.; Zhang, H.; Li, Y.; Wang, J.; Ma, L.; Zhang, W.; Liu, Jian (2015)
      © 2015 The Royal Society of Chemistry. Proton carriers are essential for highly conductive polymer electrolyte membranes. Herein, a series of nanofibrous composite membranes (NFCMs) are prepared by facilely incorporating ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.