Constructing Ionic Liquid-Filled Proton Transfer Channels within Nanocomposite Membrane by Using Functionalized Graphene Oxide
Access Status
Authors
Date
2016Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2015 American Chemical Society. Herein, nanocomposite membranes are fabricated based on functionalized graphene oxides (FGOs) and sulfonated poly(ether ether ketone) (SPEEK), followed by being impregnated with imidazole-type ionic liquid (IL). The functional groups (acidic group or basic group) on FGOs generate strong interfacial interactions with SPEEK chains and then adjust their motion and stacking. As a result, the nanocomposite membranes possess tunable interfacial domains as determined by its free volume characteristic, which provides regulated location for IL storage. The stored ILs act as hopping sites for water-free proton conduction along the FGO-constructed interfacial channels. The microstructure at SPEEK-FGO interface governs the IL uptake and distribution in nanocomposite membrane. Different from GO and vinyl imidazole functionalized GO (VGO), the presence of acidic (-SO3H) groups confers the p-styrenesulfonic acid functionalized GO (SGO) incorporated nanocomposite membrane loose interface and strong electrostatic attraction with imidazole-type IL, imparting an enhanced IL uptake and anhydrous proton conductivity. Nanocomposite membrane containing 7.5% SGO attains the maximum IL uptake of 73.7% and hence the anhydrous conductivity of 21.9 mS cm-1at 150 °C, more than 30 times that of SPEEK control membrane (0.69 mS cm-1). In addition, SGOs generate electrostatic attractions to the ILs confined within SGO-SPEEK interface, affording the nanocomposite membrane enhanced IL retention ability.
Related items
Showing items related by title, author, creator and subject.
-
He, Y.; Wang, J.; Zhang, H.; Zhang, T.; Zhang, B.; Cao, S.; Liu, Jian (2014)A new approach to the facile preparation of anhydrous proton exchange membrane (PEM) enabled by artificial acid-base pairs is presented herein. Inspired by the bioadhesion of mussel, polydopamine-modified graphene oxide ...
-
Zhang, H.; Ma, C.; Wang, J.; Wang, X.; Bai, H.; Liu, Jian (2014)Proton exchange membrane (PEM) with high proton conductivity is crucial to the commercial application of PEM fuel cell. Herein, sulfonated halloysite nanotubes (SHNTs) with tunable sulfonic acid group loading were synthesized ...
-
Ge, L.; Zhu, Z.; Li, F.; Liu, Shaomin; Wang, L.; Tang, X.; Rudolph, V. (2011)Metal- or functional group-modified multiwalled carbon nanotubes (CNTs) were embedded into the poly(ether sulfone) (PES) polymer matrix to study the gas permeability of the nanocomposite membranes. Carboxyl-functionalized ...