Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Tuning the performance of Pt-Ni alloy/reduced graphene oxide catalysts for 4-nitrophenol reduction

    Access Status
    Fulltext not available
    Authors
    Zhao, F.
    Kong, W.
    Hu, Z.
    Liu, Jian
    Zhao, Y.
    Zhang, B.
    Date
    2016
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Zhao, F. and Kong, W. and Hu, Z. and Liu, J. and Zhao, Y. and Zhang, B. 2016. Tuning the performance of Pt-Ni alloy/reduced graphene oxide catalysts for 4-nitrophenol reduction. RSC Advances. 6 (82): pp. 79028-79036.
    Source Title
    RSC Advances
    DOI
    10.1039/c6ra16045j
    ISSN
    2046-2069
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/71981
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 The Royal Society of Chemistry. An environmentally benign and economic reaction system with an effective catalyst for 4-nitrophenol reduction is highly desirable. Here, we synthesized reduced graphene oxide (RGO) supported Pt-Ni alloy catalysts with different atomic ratios of Pt and Ni, investigated their morphology, size, dispersity, structure and elemental valence, and studied their catalytic activity in order to tune their performance for 4-nitrophenol reduction. It is worth pointing out that the RGO support can efficiently avoid the aggregation of Pt-Ni alloy nanoparticles, and the most dispersed and smallest Pt-Ni particles on RGO can be obtained when the atomic ratio of Pt to Ni is 1 : 9. The Pt-Ni/RGO (1 : 9) nanocatalyst also shows a higher catalytic activity toward the conversion of 4-NP to 4-AP with a catalytic rate constant of 0.3700 min-1than Pt-Ni/RGO (1 : 3) and Pt-Ni/RGO (1 : 25), and much higher than that of Pt/RGO, Ni/RGO and bare Pt-Ni owing to the well-defined composition, small particle size (10 nm), good dispersion, synergistic effect between Pt and Ni, and electron transfer between RGO and Pt-Ni alloy nanoparticles. In addition, the catalyst possesses good stability and recyclability for the catalytic reduction reaction. The Pt-Ni/RGO nanocatalyst, with well-defined composition, small particle size, uniform dispersity, high catalytic rate, and recyclability, should be an ideal catalyst for specific applications in liquid phase reactions.

    Related items

    Showing items related by title, author, creator and subject.

    • In situ fabrication of (Sr,La)FeO4 with CoFe alloy nanoparticles as an independent catalyst layer for direct methane-based solid oxide fuel cells with a nickel cermet anode
      Chang, H.; Chen, H.; Shao, Zongping; Shi, J.; Bai, J.; Li, S. (2016)
      © 2016 The Royal Society of Chemistry.An independent catalyst layer is applied to develop a highly effective way to reduce coking when operating in methane based fuels, in which the catalyst layer is separated from a Ni ...
    • Steam reforming of phenol-ethanol to produce hydrogen over bimetallic NiCu catalysts supported on sepiolite
      Liang, T.; Wang, Y.; Chen, M.; Yang, Z.; Liu, Shaomin; Zhou, Z.; Li, X. (2017)
      © 2017 Hydrogen Energy Publications LLC. A series of NiCu bimetallic catalysts supported on sepiolite (Ni x Cu y /SEP) were prepared by co-precipitation method. The all as-prepared catalysts were characterized by using ...
    • Selectivity enhancement for higher alcohol product in Fischer-Tropsch synthesis over nickel-substituted La0.9Sr0.1CoO3 perovskite catalysts
      Ao, M.; Pham, Gia; Sage, V.; Pareek, Vishnu (2017)
      © 2017 Elsevier Ltd The performance of La 0.9 Sr 0.1 Co 1-x Ni x O 3 perovskite catalysts with different Ni substitution levels was evaluated in the Fischer-Tropsch (F-T) synthesis for higher alcohol production. It was ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.