A strategy of global convergence for the affine scaling algorithm for convex semidefinite programming
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
The affine scaling algorithm is one of the earliest interior point methods developed for linear programming. This algorithm is simple and elegant in terms of its geometric interpretation, but it is notoriously difficult to prove its convergence. It often requires additional restrictive conditions such as nondegeneracy, specific initial solutions, and/or small step length to guarantee its global convergence. This situation is made worse when it comes to applying the affine scaling idea to the solution of semidefinite optimization problems or more general convex optimization problems. In (Math Program 83(1–3):393–406, 1998), Muramatsu presented an example of linear semidefinite programming, for which the affine scaling algorithm with either short or long step converges to a nonoptimal point. This paper aims at developing a strategy that guarantees the global convergence for the affine scaling algorithm in the context of linearly constrained convex semidefinite optimization in a least restrictive manner. We propose a new rule of step size, which is similar to the Armijo rule, and prove that such an affine scaling algorithm is globally convergent in the sense that each accumulation point of the sequence generated by the algorithm is an optimal solution as long as the optimal solution set is nonempty and bounded. The algorithm is least restrictive in the sense that it allows the problem to be degenerate and it may start from any interior feasible point.
Related items
Showing items related by title, author, creator and subject.

Loxton, Ryan Christopher (2010)In this thesis, we develop numerical methods for solving five nonstandard optimal control problems. The main idea of each method is to reformulate the optimal control problem as, or approximate it by, a nonlinear programming ...

Li, S.; Yang, X.; Teo, Kok Lay; Wu, S. (2004)In this paper, we develop a discretisation algorithm with an adaptive scheme for solving a class of combined semiinfinite and semidefinite programming problems. We show that any sequence of points generated by the ...

Ruan, Ning (2012)Duality is one of the most successful ideas in modern science [46] [91]. It is essential in natural phenomena, particularly, in physics and mathematics [39] [94] [96]. In this thesis, we consider the canonical duality ...