Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    The genetics of symbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by resolution of protein clusters

    Access Status
    Open access via publisher
    Authors
    Black, M.
    Moolhuijzen, Paula
    Chapman, B.
    Barrero, R.
    Howieson, J.
    Hungria, M.
    Bellgard, M.
    Date
    2012
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Black, M. and Moolhuijzen, P. and Chapman, B. and Barrero, R. and Howieson, J. and Hungria, M. and Bellgard, M. 2012. The genetics of symbiotic nitrogen fixation: Comparative genomics of 14 rhizobia strains by resolution of protein clusters. Genes. 3 (1): pp. 138-166.
    Source Title
    Genes
    DOI
    10.3390/genes3010138
    School
    Centre for Crop Disease Management
    URI
    http://hdl.handle.net/20.500.11937/7219
    Collection
    • Curtin Research Publications
    Abstract

    The symbiotic relationship between legumes and nitrogen fixing bacteria is critical for agriculture, as it may have profound impacts on lowering costs for farmers, on land sustainability, on soil quality, and on mitigation of greenhouse gas emissions. However, despite the importance of the symbioses to the global nitrogen cycling balance, very few rhizobial genomes have been sequenced so far, although there are some ongoing efforts in sequencing elite strains. In this study, the genomes of fourteen selected strains of the order Rhizobiales, all previously fully sequenced and annotated, were compared to assess differences between the strains and to investigate the feasibility of defining a core 'symbiome'-the essential genes required by all rhizobia for nodulation and nitrogen fixation. Comparison of these whole genomes has revealed valuable information, such as several events of lateral gene transfer, particularly in the symbiotic plasmids and genomic islands that have contributed to a better understanding of the evolution of contrasting symbioses. Unique genes were also identified, as well as omissions of symbiotic genes that were expected to be found. Protein comparisons have also allowed the identification of a variety of similarities and differences in several groups of genes, including those involved in nodulation, nitrogen fixation, production of exopolysaccharides, Type I to Type VI secretion systems, among others, and identifying some key genes that could be related to host specificity and/or a better saprophytic ability. However, while several significant differences in the type and number of proteins were observed, the evidence presented suggests no simple core symbiome exists. A more abstract systems biology concept of nitrogen fixing symbiosis may be required. The results have also highlighted that comparative genomics represents a valuable tool for capturing specificities and generalities of each genome. © 2012 by the authors.

    Related items

    Showing items related by title, author, creator and subject.

    • Population genomics of Australian indigenous Mesorhizobium reveals diverse nonsymbiotic genospecies capable of nitrogen-fixing symbioses following horizontal gene transfer
      Colombi, Elena ; Hill, Y.; Lines, Rose ; Sullivan, J.T.; Kohlmeier, M.G.; Christophersen, Claus ; Ronson, C.W.; Terpolilli, J.J.; Ramsay, Joshua (2023)
      Mesorhizobia are soil bacteria that establish nitrogen-fixing symbioses with various legumes. Novel symbiotic mesorhizobia frequently evolve following horizontal transfer of symbiosis-gene-carrying integrative and conjugative ...
    • The Genome of the Acid Soil-Adapted Strain Rhizobium favelukesii OR191 Encodes Determinants for Effective Symbiotic Interaction With Both an Inverted Repeat Lacking Clade and a Phaseoloid Legume Host.
      Eardly, Bertrand; Meor Osman, Wan Adnawani; Ardley, Julie; Zandberg, Jaco; Gollagher, Margaret; van Berkum, Peter; Elia, Patrick; Marinova, Dora ; Seshadri, Rekha; Reddy, T.B.K.; Ivanova, Natalia; Pati, Amrita; Woyke, Tanja; Kyrpides, Nikos; Loedolff, Matthys; Laird, Damian W; Reeve, Wayne (2022)
      Although Medicago sativa forms highly effective symbioses with the comparatively acid-sensitive genus Ensifer, its introduction into acid soils appears to have selected for symbiotic interactions with acid-tolerant R. ...
    • Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil
      Klonowska, Agnieszka; Moulin, Lionel; Ardley, Julie Kaye; Braun, Florence; Gollagher, Margaret Mary; Zandberg, Jaco Daniel; Marinova, Dora ; Huntemann, Marcel; Reddy, T.B.K.; Varghese, Neha Jacob; Woyke, Tanja; Ivanova, Natalia; Seshadri, Rekha; Kyrpides, Nikos; Reeve, Wayne Gerald (2020)
      Background: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.