Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Developing a �Water-Defendable� and �Dendrite-Free� Lithium-Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method

    Access Status
    Fulltext not available
    Authors
    Liao, K.
    Wu, S.
    Mu, X.
    Lu, Q.
    Han, M.
    He, P.
    Shao, Zongping
    Zhou, H.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Liao, K. and Wu, S. and Mu, X. and Lu, Q. and Han, M. and He, P. and Shao, Z. et al. 2018. Developing a �Water-Defendable� and �Dendrite-Free� Lithium-Metal Anode Using a Simple and Promising GeCl4 Pretreatment Method. Advanced Materials. 30 (36).
    Source Title
    Advanced Materials
    DOI
    10.1002/adma.201705711
    ISSN
    0935-9648
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/72192
    Collection
    • Curtin Research Publications
    Abstract

    © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Lithium metal is an ultimate anode in “next-generation” rechargeable batteries, such as Li–sulfur batteries and Li–air (Li–O2) batteries. However, uncontrollable dendritic Li growth and water attack have prevented its practical applications, especially for open-system Li–O2 batteries. Here, it is reported that the issues can be addressed via the facile process of immersing the Li metal in organic GeCl4–THF steam for several minutes before battery assembly. This creates a 1.5 µm thick protection layer composed of Ge, GeOx, Li2CO3, LiOH, LiCl, and Li2O on Li surface that allows stable cycling of Li electrodes both in Li-symmetrical cells and Li–O2 cells, especially in “moist” electrolytes (with 1000–10 000 ppm H2O) and humid O2 atmosphere (relative humidity (RH) of 45%). This work illustrates a simple and effective way for the unfettered development of Li-metal-based batteries.

    Related items

    Showing items related by title, author, creator and subject.

    • Flexible Zn- and Li-air batteries: Recent advances, challenges, and future perspectives
      Tan, P.; Chen, B.; Xu, H.; Zhang, H.; Cai, W.; Ni, M.; Liu, M.; Shao, Zongping (2017)
      The demand for flexible power sources with high energy density and durability has increased rapidly with the development of flexible and wearable electronic devices. Metal-air batteries are considered as the most promising ...
    • A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells
      Zhou, W.; Wang, X.; Zhu, Y.; Dai, J.; Zhu, Y.; Shao, Zongping (2018)
      © 2018, Materials Review Magazine. All right reserved. The over-exploitation and over-utilization of fossil fuel resources such as petroleum and coal has aggravated energy and environment problem in the 21st century, and ...
    • Co3O4 Nanosheets as Active Material for Hybrid Zn Batteries
      Tan, P.; Chen, B.; Xu, H.; Cai, W.; He, W.; Liu, M.; Shao, Zongping; Ni, M. (2018)
      © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The rapid development of electric vehicles and modern personal electronic devices is severely hindered by the limited energy and power density of the existing power ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.