From Metal Hydrides to Metal Borohydrides
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
© 2018 American Chemical Society. Commencing from metal hydrides, versatile synthesis, purification, and desolvation approaches are presented for a wide range of metal borohydrides and their solvates. An optimized and generalized synthesis method is provided for 11 different metal borohydrides, M(BH4)n, (M = Li, Na, Mg, Ca, Sr, Ba, Y, Nd, Sm, Gd, Yb), providing controlled access to more than 15 different polymorphs and in excess of 20 metal borohydride solvate complexes. Commercially unavailable metal hydrides (MHn, M = Sr, Ba, Y, Nd, Sm, Gd, Yb) are synthesized utilizing high pressure hydrogenation. For synthesis of metal borohydrides, all hydrides are mechanochemically activated prior to reaction with dimethylsulfide borane. A purification process is devised, alongside a complementary desolvation process for solvate complexes, yielding high purity products. An array of polymorphically pure metal borohydrides are synthesized in this manner, supporting the general applicability of this method. Additionally, new metal borohydrides, a-, a'- ß-, ?-Yb(BH4)2, a-Nd(BH4)3 and new solvates Sr(BH4)2·1THF, Sm(BH4)2·1THF, Yb(BH4)2·xTHF, x = 1 or 2, Nd(BH4)3·1Me2S, Nd(BH4)3·1.5THF, Sm(BH4)3·1.5THF and Yb(BH4)3·xMe2S ("x" = unspecified), are presented here. Synthesis conditions are optimized individually for each metal, providing insight into reactivity and mechanistic concerns. The reaction follows a nucleophilic addition/hydride-transfer mechanism. Therefore, the reaction is most efficient for ionic and polar-covalent metal hydrides. The presented synthetic approaches are widely applicable, as demonstrated by permitting facile access to a large number of materials and by performing a scale-up synthesis of LiBH4.
Related items
Showing items related by title, author, creator and subject.
-
Ley, M.; Paskevicius, Mark; Schouwink, P.; Richter, B.; Sheppard, Drew; Buckley, Craig; Jensen, T. (2014)Rare earth metal borohydrides have been proposed as materials for solid-state hydrogen storage because of their reasonably low temperature of decomposition. New synthesis methods, which provide halide-free yttrium and ...
-
Paskevicius, Mark; Jepsen, L.; Schouwink, P.; Cerný, R.; Ravnsbæk, D.; Filinchuk, Y.; Dornheim, M.; Besenbacher, F.; Jensen, T. (2017)© The Royal Society of Chemistry 2017.A wide variety of metal borohydrides, MBH4, have been discovered and characterized during the past decade, revealing an extremely rich chemistry including fascinating structural ...
-
Jensen, S.; Paskevicius, Mark; Hansen, B.; Jakobsen, A.; Møller, K.; White, J.; Allendorf, M.; Stavila, V.; Skibsted, J.; Jensen, T. (2018)© 2018 the Owner Societies. The hydrogen absorption properties of metal closo-borate/metal hydride composites, M2B10H10-8MH and M2B12H12-10MH, M = Li or Na, are studied under high hydrogen pressures to understand the ...