A generalized labeled multi-bernoulli filter with object spawning
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Funding and Sponsorship
Collection
Abstract
Previous labeled random finite set filter developments use a motion model that only accounts for survival and birth. While such a model provides the means for a multi-object tracking filter, such as the generalized labeled multi-Bernoulli (GLMB) filter to capture object births and deaths in a wide variety of applications, it lacks the capability to capture spawned tracks and their lineages. In this paper, we propose a new Generalized Labeled Multi-Bernoulli (GLMB)-based filter that formally incorporates spawning, in addition to birth. This formulation enables the joint estimation of a spawned object's state and information regarding its lineage. Simulations results demonstrate the efficacy of the proposed formulation.
Related items
Showing items related by title, author, creator and subject.
-
Bryant, D.; Vo, Ba Tuong; Vo, Ba-Ngu; Jones, B. (2017)© 2017 IEEE. Previous labeled random finite set filter developments use a target motion model that only accounts for survival and birth. While such a model provides the means for a multi-target tracking filter such as the ...
-
Nguyen, Tran Thien Dat ; Kim, Du Yong (2019)In this paper, we introduce a tracking algorithm based on labeled Random Finite Sets (RFS) and Rauch–Tung–Striebel (RTS) smoother via a Generalized Labeled Multi-Bernoulli (GLMB) multi-scan estimator to track multiple ...
-
Dat Nguyen, T.; Kim, Du Yong (2018)© 2018 IEEE. In this paper, we propose an algorithm for tracking cells that also provides lineage information. Our approach incorporates cell spawning into the random finite set dynamic model of the cell population, which ...