Performance of layered double hydroxides intercalated with acetate as biodenitrification carbon source: The effects of metal ions and particle size
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
In situ synthesis of layered double hydroxides (LDHs) is an effective way to extract short chain fatty acids (SCFAs) from anaerobic fermentation liquid to be used as carbon source for biodenitrification, but the slow release performance need to be improved. Three layered double hydroxides with different metal cations (Mg-Al, Ni-Al, Ni-Fe) intercalated with acetate (Ac) were successfully prepared in the present study. The release rates decreased in the order of MgAl-LDH > NiAl-LDH > NiFe-LDH, meaning that NiFe-LDH-Ac showed the best slow release performance. The release rate of LDHs decreased greatly along with the increase of particle size. Batch denitrification tests showed that the carbon source utilization efficiency of NiFe-LDH-Ac was 79.9%, which was much higher than that of CH3COONa (48.8%) as control. These results indicate that NiFe-LDH-Ac could be successfully employed as slow release carbon source for biodenitrification.
Related items
Showing items related by title, author, creator and subject.
-
Nabbefeld, Birgit (2009)Extinction, the irreversible loss of species, is perhaps the most alarming symptom of the ongoing biodiversity crisis. Some of the most significant changes in evolution throughout Earth’s history have coincided with ...
-
Lyons, S.L.; Karp, A.T.; Bralower, T.J.; Grice, Kliti ; Schaefer, Bettina ; Gulick, S.P.S.; Morgan, J.V.; Freeman, K.H. (2020)An asteroid impact in the Yucatán Peninsula set off a sequence of events that led to the Cretaceous-Paleogene (K-Pg) mass extinction of 76% species, including the nonavian dinosaurs. The impact hit a carbonate platform ...
-
Berwick, Lyndon (2009)The analytical capacity of MSSV pyrolysis has been used to extend the structural characterisation of aquatic natural organic matter (NOM). NOM can contribute to various potable water issues and is present in high ...