Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    Prediction of sonic velocities from other borehole data: An example from the Kevitsa mine site, northern Finland

    Access Status
    Fulltext not available
    Authors
    Kieu, D.
    Kepic, Anton
    Kitzig, M.
    Date
    2018
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Kieu, D. and Kepic, A. and Kitzig, M. 2018. Prediction of sonic velocities from other borehole data: An example from the Kevitsa mine site, northern Finland. Geophysical Prospecting. 66 (9): pp. 1667-1683.
    Source Title
    Geophysical Prospecting
    DOI
    10.1111/1365-2478.12687
    ISSN
    0016-8025
    School
    WASM: Minerals, Energy and Chemical Engineering (WASM-MECE)
    URI
    http://hdl.handle.net/20.500.11937/72510
    Collection
    • Curtin Research Publications
    Abstract

    P-wave and S-wave velocities are vital parameters for the processing of seismic data and may be useful for geotechnical studies used in mine planning if such data were collected more often. Seismic velocity data from boreholes increase the robustness and accuracy of the images obtained by relatively costly seismic surface reflection surveys. However, sonic logs are rarely acquired in boreholes in-and-near base metal and precious metal mineral deposits until a seismic survey is planned, and only a few new holes are typically logged because the many hundreds of holes previously drilled are no longer accessible. If there are any pre-existing petrophysical log data, then the data are likely to consist of density, magnetic susceptibility, resistivity and natural gamma logs. Thus, it would be of great benefit to be able to predict the velocities from other data that is more readily available. In this work, we utilize fuzzy c-means clustering to build a “fuzzy” relationship between sonic velocities and other petrophysical borehole data to predict P-wave and S-wave velocity. If boreholes with sonic data intersect most of the important geological units in the area of interest, then the cluster model developed may be applied to other boreholes that do not have sonic data, but do have other petrophysical data to be used for predicting the sonic logs. These predicted sonic logs may then be used to create a three-dimensional volume of velocity with greater detail than would otherwise be created by the interpolation of measured sonic data from sparsely located holes. Our methodology was tested on a dataset from the Kevitsa Ni-Cu-PGE deposit in northern Finland. The dataset includes five boreholes with wireline logs of P-wave velocity, S-wave velocity, density, natural gamma, magnetic susceptibility and resistivity that were used for cluster analysis. The best combination of input data for the training section was chosen by trial and error, but differences in the misfit between the various training datasets were not particularly significant. Our results show that the fuzzy c-means method can predict sonic velocities from other borehole data very well, and the fuzzy c-means method works better than using multiple linear-regression fitting. The predicted P-wave velocity data are of sufficient quality to robustly add low-frequency information for seismic impedance inversion and should provide better velocity models for accurate depth conversion of seismic reflection data.

    Related items

    Showing items related by title, author, creator and subject.

    • Estimation of P-wave velocity from other borehole data
      Kieu, D.; Kitzig, M.; Kepic, Anton (2016)
      P-wave velocities are a key parameter for seismic processing and the absence of this parameter reduces the robustness of the images from very expensive seismic surveys. The P-wave velocities in an area are particular to ...
    • Investigation of pressure and saturation effects on elastic parameters: an integrated approach to improve time-lapse interpretation
      Grochau, Marcos Hexsel (2009)
      Time-lapse seismic is a modern technology for monitoring production-induced changes in and around a hydrocarbon reservoir. Time-lapse (4D) seismic may help locate undrained areas, monitor pore fluid changes and identify ...
    • Feasibility of rock characterization for mineral exploration using seismic data
      Harrison, Christopher Bernard (2009)
      The use of seismic methods in hard rock environments in Western Australia for mineral exploration is a new and burgeoning technology. Traditionally, mineral exploration has relied upon potential field methods and surface ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.