Intercalating ionic liquid in graphene oxide to create efficient and stable anhydrous proton transfer highways for polymer electrolyte membrane
Access Status
Authors
Date
2017Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2017 Hydrogen Energy Publications LLC Approaches for constructing efficient and stable proton transfer highways in polymer materials are urgently desirable and required for elevated-temperature polymer electrolyte membrane fuel cell (PEMFC). Herein, ionic liquid intercalated GO (IGO) with acceptable fluidity is synthesized by a facile one-pot method and then utilized to construct anhydrous transfer highways in polymer-based composite membrane. The basic-imidazole-cation-containing ionic liquid (IL) increases the flexibility of IGO and meanwhile reinforces the interaction with acidic sulfonated poly(ether ether ketone) (SPEEK) matrix, thus yielding more proportion of perpendicularly oriented IGO and the subsequent formation of 3-D cross-linked IGO networks. The IL molecules act as effective proton carrier sites along IGO networks, and in this way, efficient and long-range transfer highways for “bulk in-plane” proton conduction are constructed. SP-(25I-GO)-10% achieves the maximum conductivity of 7.29 mS cm-1at 150 °C, 10 times higher than that of SPEEK control membrane. Meanwhile, the maximum current density and power density of SP-(25I-GO)-10% at 90 °C are 574.1 mA cm-2and 145.1 mW cm-2, increased by 48% and 102% compared with that of SPEEK control membrane, respectively. Additionally, the nanoconfined effect of interlayer renders composite membrane enhanced IL retention ability through capillary force, consequently stable proton conduction and single cell behavior.
Related items
Showing items related by title, author, creator and subject.
-
Zhao, L.; Li, Y.; Zhang, H.; Wu, W.; Liu, Jian; Wang, J. (2015)© 2015 Elsevier B.V. All rights reserved. Abstract Sulfonated polymer brush modified graphene oxide (SP-GO) fillers with controllable brush length are synthesized via the facile distillation-precipitation polymerization, ...
-
He, Y.; Zhang, H.; Li, Y.; Wang, J.; Ma, L.; Zhang, W.; Liu, Jian (2015)© 2015 The Royal Society of Chemistry. Proton carriers are essential for highly conductive polymer electrolyte membranes. Herein, a series of nanofibrous composite membranes (NFCMs) are prepared by facilely incorporating ...
-
Wang, J.; Bai, H.; Zhang, J.; Zhao, L.; Chen, P.; Li, Y.; Liu, Jian (2017)© 2017 Elsevier B.V. For composite membrane, efficient mass transfer between polymer and filler can trigger synergic promotion effect through the tunable interfacial nanodomains. Herein, four kinds of functionalized ...