Show simple item record

dc.contributor.authorPedrini, S.
dc.contributor.authorLewandrowski, W.
dc.contributor.authorStevens, J.
dc.contributor.authorDixon, Kingsley
dc.date.accessioned2018-12-13T09:13:51Z
dc.date.available2018-12-13T09:13:51Z
dc.date.created2018-12-12T02:46:59Z
dc.date.issued2018
dc.identifier.citationPedrini, S. and Lewandrowski, W. and Stevens, J. and Dixon, K. 2018. Optimising seed processing techniques to improve germination and sowability of native grasses for ecological restoration. Plant Biology.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/72575
dc.identifier.doi10.1111/plb.12885
dc.description.abstract

© 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands Grasslands across the globe are undergoing expansive degradation due to human impacts and climate change. If restoration of degraded native grassland is to be achieved at the scale now required, cost-effective means for seed-based establishment of grass species is crucial. However, grass seeds present numerous challenges associated with handling and germination performance that must be overcome to improve the efficiency of seeding. Previous research has demonstrated that complete removal of the palea and lemma (husk) maximises germination performance, hence we investigated the effects of complete husk removal on seed handling and germination of four temperate Australian grass species. Three techniques were tested to remove the husk – manual cleaning, flaming or acid digestion (the latter two followed by a manual cleaning step); these techniques were refined and adapted to the selected species, and germination responses were compared. The complete removal of the husk improved seed handling and sowability for all species. Germination was improved in Microlaena stipoides by 19% and in Rytidosperma geniculatum by 11%. Of the husk removal methods tested, flaming was detrimental to seed germination and fatal for one species (R. geniculatum). Compared to manual cleaning, sulphuric acid improved the overall efficacy of the cleaning procedure and increased germination speed (T50) in Austrostipa scabra, Chloris truncata and M. stipoides, and improved final germination in R. geniculatum by 13%. The seed processing methods developed and tested in the present study can be applied to grass species that present similar handling and germination performance impediments. These and other technological developments (seed coating and precision sowing) will facilitate more efficient grassland restoration at large scale.

dc.relation.sponsoredbyhttp://purl.org/au-research/grants/arc/IC150100041
dc.titleOptimising seed processing techniques to improve germination and sowability of native grasses for ecological restoration
dc.typeJournal Article
dcterms.source.issn1435-8603
dcterms.source.titlePlant Biology
curtin.departmentSchool of Molecular and Life Sciences (MLS)
curtin.accessStatusFulltext not available


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record