Show simple item record

dc.contributor.authorRandall, Sean
dc.contributor.authorBrown, Adrian
dc.contributor.authorBoyd, James
dc.contributor.authorSchnell, R.
dc.contributor.authorBorgs, C.
dc.contributor.authorFerrante, Anna
dc.date.accessioned2018-12-13T09:13:57Z
dc.date.available2018-12-13T09:13:57Z
dc.date.created2018-12-12T02:47:01Z
dc.date.issued2018
dc.identifier.citationRandall, S. and Brown, A. and Boyd, J. and Schnell, R. and Borgs, C. and Ferrante, A. 2018. Sociodemographic differences in linkage error: An examination of four large-scale datasets. BMC Health Services Research. 18: 678.
dc.identifier.urihttp://hdl.handle.net/20.500.11937/72626
dc.identifier.doi10.1186/s12913-018-3495-x
dc.description.abstract

© 2018 The Author(s). Background: Record linkage is an important tool for epidemiologists and health planners. Record linkage studies will generally contain some level of residual record linkage error, where individual records are either incorrectly marked as belonging to the same individual, or incorrectly marked as belonging to separate individuals. A key question is whether errors in linkage quality are distributed evenly throughout the population, or whether certain subgroups will exhibit higher rates of error. Previous investigations of this issue have typically compared linked and un-linked records, which can conflate bias caused by record linkage error, with bias caused by missing records (data capture errors). Methods: Four large administrative datasets were individually de-duplicated, with results compared to an available 'gold-standard' benchmark, allowing us to avoid methodological issues with comparing linked and un-linked records. Results were compared by gender, age, geographic remoteness (major cities, regional or remote) and socioeconomic status. Results: Results varied between datasets, and by sociodemographic characteristic. The most consistent findings were worse linkage quality for younger individuals (seen in all four datasets) and worse linkage quality for those living in remote areas (seen in three of four datasets). The linkage quality within sociodemographic categories varied between datasets, with the associations with linkage error reversed across different datasets due to quirks of the specific data collection mechanisms and data sharing practices. Conclusions: These results suggest caution should be taken both when linking younger individuals and those in remote areas, and when analysing linked data from these subgroups. Further research is required to determine the ramifications of worse linkage quality in these subpopulations on research outcomes.

dc.publisherBioMed Central
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleSociodemographic differences in linkage error: An examination of four large-scale datasets
dc.typeJournal Article
dcterms.source.volume18
dcterms.source.number1
dcterms.source.issn1472-6963
dcterms.source.titleBMC Health Services Research
curtin.departmentSchool of Public Health
curtin.accessStatusOpen access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/