Curtin University Homepage
  • Library
  • Help
    • Admin

    espace - Curtin’s institutional repository

    JavaScript is disabled for your browser. Some features of this site may not work without it.
    View Item 
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item
    • espace Home
    • espace
    • Curtin Research Publications
    • View Item

    High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions

    Access Status
    Fulltext not available
    Authors
    Halperin, O.
    Gebremedhin, Amanuel Tesfay
    Wallach, R.
    Moshelion, M.
    Date
    2017
    Type
    Journal Article
    
    Metadata
    Show full item record
    Citation
    Halperin, O. and Gebremedhin, A.T. and Wallach, R. and Moshelion, M. 2017. High-throughput physiological phenotyping and screening system for the characterization of plant–environment interactions. TECHGet insThe Plant Journal. 89 (4): pp. 839-850.
    Source Title
    TECHGet insThe Plant Journal
    DOI
    10.1111/tpj.13425
    ISSN
    0960-7412
    School
    School of Public Health
    URI
    http://hdl.handle.net/20.500.11937/72641
    Collection
    • Curtin Research Publications
    Abstract

    © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd We present a simple and effective high-throughput experimental platform for simultaneous and continuous monitoring of water relations in the soil–plant–atmosphere continuum of numerous plants under dynamic environmental conditions. This system provides a simultaneously measured, detailed physiological response profile for each plant in the array, over time periods ranging from a few minutes to the entire growing season, under normal, stress and recovery conditions and at any phenological stage. Three probes for each pot in the array and a specially designed algorithm enable detailed water-relations characterization of whole-plant transpiration, biomass gain, stomatal conductance and root flux. They also enable quantitative calculation of the whole plant water-use efficiency and relative water content at high resolution under dynamic soil and atmospheric conditions. The system has no moving parts and can fit into many growing environments. A screening of 65 introgression lines of a wild tomato species (Solanum pennellii) crossed with cultivated tomato (S. lycopersicum), using our system and conventional gas-exchange tools, confirmed the accuracy of the system as well as its diagnostic capabilities. The use of this high-throughput diagnostic screening method is discussed in light of the gaps in our understanding of the genetic regulation of whole-plant performance, particularly under abiotic stress.

    Related items

    Showing items related by title, author, creator and subject.

    • Terrestrial ecosystems, increased solar ultraviolet radiation and interactions with other climatic change factors
      Caldwell, M.; Bornman, Janet; Ballare, C.; Flint, S.; Kulandaivelu, G. (2007)
      There have been significant advances in our understanding of the effects of UV-B radiation on terrestrial ecosystems, especially in the description of mechanisms of plant response. A further area of highly interesting ...
    • Effects of irrigation rate on the growth, yield, nutritive value, and water use efficiency of Carrot (Daucus carota) and Broccoli (Brasiola oleracea)
      Ludong, Daniel Peter M. (2008)
      The effects of differential irrigation treatments on the water use of broccoli (c.v. Indurance) and carrots (c.v. Stefano) were studied in the rainy, winter season from July to September 2006 and in the dry, summer period ...
    • Size exclusion chromatography as a tool for natural organic matter characterisation in drinking water treatment
      Allpike, Bradley (2008)
      Natural organic matter (NOM), ubiquitous in natural water sources, is generated by biogeochemical processes in both the water body and in the surrounding watershed, as well as from the contribution of organic compounds ...
    Advanced search

    Browse

    Communities & CollectionsIssue DateAuthorTitleSubjectDocument TypeThis CollectionIssue DateAuthorTitleSubjectDocument Type

    My Account

    Admin

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    Follow Curtin

    • 
    • 
    • 
    • 
    • 

    CRICOS Provider Code: 00301JABN: 99 143 842 569TEQSA: PRV12158

    Copyright | Disclaimer | Privacy statement | Accessibility

    Curtin would like to pay respect to the Aboriginal and Torres Strait Islander members of our community by acknowledging the traditional owners of the land on which the Perth campus is located, the Whadjuk people of the Nyungar Nation; and on our Kalgoorlie campus, the Wongutha people of the North-Eastern Goldfields.