Fabrication of PVDF hollow fiber membranes via integrated phase separation for membrane distillation
Access Status
Authors
Date
2019Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Collection
Abstract
© 2018 Taiwan Institute of Chemical Engineers In this study, polyvinylidene fluoride (PVDF) hollow fibers with interpenetrating network morphologies were fabricated via complex thermally induced phase separation (c-TIPS) by integration of non-solvent induced phase separation (NIPS) and thermally induced phase separation (TIPS) at 80 °C and then tested in membrane distillation (MD). The effects of solvents, additive and bore fluid on the membrane morphology, pore structure and MD performance were investigated. Direct-contact membrane distillation (DCMD) for desalination was carried out to evaluate membrane permeability and salt rejection. Using a weak solvent like triethylphosphate (TEP) and weak bore fluid like polyethylene glycol (PEG-200) in the c-TIPS favors the formation of an interpenetrating network morphology. In addition, PEG-200 increased the roughness and water contact angle of the inner skin. The hollow fibers fabricated via the c-TIPS at low temperature presented high permeability, mechanical strength and long-term stability. In desalination of formulated seawater, a distillate flux of 61.6 kg/m2h with NaCl rejection of 99.99% was achieved at feed temperature of 71 °C.
Related items
Showing items related by title, author, creator and subject.
-
Fan, H.; Peng, Y.; Li, Z.; Chen, P.; Jiang, Q.; Wang, Shaobin (2013)Hydrophobic symmetric flat-sheet membranes of polyvinylidene fluoride (PVDF) for use in vacuum membrane distillation (VMD) were successfully fabricated by the vapour induced phase separation (VIPS) method using the double ...
-
Jia, Huanfei (2002)This thesis investigates an application of immobilized lipase for pre-treating wastewater containing fats and oils, which is difficult to treat practically. The kinetics of soluble lipase was studied for establishing ...
-
Wang, Y.; Zhu, J.; Dong, G.; Zhang, Y.; Guo, N.; Liu, Jian (2015)© 2015 Elsevier B.V. Abstract First, styrene was grafted onto the surface of halloysite nanotubes (HNTs) via distillation-precipitation polymerization and the above modified HNTs were sulfonated by concentrated sulfuric ...