GAW20: Methods and strategies for the new frontiers of epigenetics and pharmacogenomics
Access Status
Authors
Date
2018Type
Metadata
Show full item recordCitation
Source Title
ISSN
School
Remarks
Genetic Analysis Workshop 20: envisioning the future of statistical genetics by exploring methods for epigenetic and pharmacogenomic data
Collection
Abstract
© 2018 The Author(s). GAW20 provided a platform for developing and evaluating statistical methods to analyze human lipid-related phenotypes, DNA methylation, and single-nucleotide markers in a study involving a pharmaceutical intervention. In this article, we present an overview of the data sets and the contributions analyzing these data. The data, donated by the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) investigators, included data from 188 families (N = 1105) which included genome-wide DNA methylation data before and after a 3-week treatment with fenofibrate, single-nucleotide polymorphisms, metabolic syndrome components before and after treatment, and a variety of covariates. The contributions from individual research groups were extensively discussed prior, during, and after the Workshop in groups based on discussion themes, before being submitted for publication.
Related items
Showing items related by title, author, creator and subject.
-
Wright, Graeme L. (2000)The objective of this study was to investigate the application of multiscale satellite remote sensing data for assessment of land cover change in the rural-urban fringe. Inherent in this assessment process was the ...
-
Issa, Tomayess; Jadeja, B. (2018)Big data is new technology trend and it provides immense advantages. There are too many social networking websites people are using, these websites more than ever before. The data which has been created in the last 5 years ...
-
Lockery, J.E.; Collyer, T.A.; Reid, Christopher ; Ernst, M.E.; Gilbertson, D.; Hay, N.; Kirpach, B.; McNeil, J.J.; Nelson, M.R.; Orchard, S.G.; Pruksawongsin, K.; Shah, R.C.; Wolfe, R.; Woods, R.L. (2019)© 2019 The Author(s). Background: Large-scale studies risk generating inaccurate and missing data due to the complexity of data collection. Technology has the potential to improve data quality by providing operational ...